Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing (2023)
Journal Article
Shiffa, M., Dewes, B. T., Bradford, J., Cottam, N. D., Cheng, T. S., Mellor, C. J., …Patanè, A. (2024). Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing. Small, 20(7), Article 2305865. https://doi.org/10.1002/smll.202305865

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top‐down approaches to their fabrication, such as exfoliation of bulk crystals by “scotch‐tape,” are widely used, but have limi... Read More about Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing.

The adsorption and XPS of triphenylamine-based organic dye molecules on rutile TiO2(110) prepared by UHV-compatible electrospray deposition (2023)
Journal Article
Alharbi, N., Hart, J., & O'Shea, J. N. (2023). The adsorption and XPS of triphenylamine-based organic dye molecules on rutile TiO2(110) prepared by UHV-compatible electrospray deposition. Surface Science, 735, Article 122323. https://doi.org/10.1016/j.susc.2023.122323

We present an X-ray photoelectron spectroscopy (XPS) study of a series of organic triphenylamine-based organic dye molecules (D5, SC4 and R6) deposited onto an atomically clean TiO2(110) single crystal surface by vacuum-compatible electrospray deposi... Read More about The adsorption and XPS of triphenylamine-based organic dye molecules on rutile TiO2(110) prepared by UHV-compatible electrospray deposition.

Self-assembly and tiling of a prochiral hydrogen-bonded network: bi-isonicotinic acid on coinage metal surfaces (2023)
Journal Article
Allen, A., Abdur Rashid, M., Rahe, P., Jarvis, S. P., O'Shea, J. N., Dunn, J. L., & Moriarty, P. (2023). Self-assembly and tiling of a prochiral hydrogen-bonded network: bi-isonicotinic acid on coinage metal surfaces. Molecular Physics, 121(7-8), Article e2192824. https://doi.org/10.1080/00268976.2023.2192824

Submolecular resolution scanning tunnelling microscopy and qPlus atomic force microscopy reveal that, close to thermal equilibrium, bi-isonicotinic acid (4,4'-COOH-2,2'-bpy) assembles into extended molecular rows on both Au(111) and Ag(100) surfaces,... Read More about Self-assembly and tiling of a prochiral hydrogen-bonded network: bi-isonicotinic acid on coinage metal surfaces.

Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring** (2023)
Journal Article
Majewski, M. A., Stawski, W., Van Raden, J., Clarke, M., Hart, J., O'Shea, J., …Anderson, H. L. (2023). Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**. Angewandte Chemie International Edition, Article 202302114. https://doi.org/10.1002/anie.202302114

Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesi... Read More about Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**.

On-surface polymerisation and self-assembly of DPP-based molecular wires (2023)
Journal Article
Clarke, M., Bellamy-Carter, A., Malagreca, F., Hart, J., Argent, S. P., O'Shea, J. N., …Saywell, A. (2023). On-surface polymerisation and self-assembly of DPP-based molecular wires. Molecular Systems Design and Engineering, https://doi.org/10.1039/d2me00232a

The incorporation of organic semiconducting materials within solid-state electronic devices provides a potential route to highly efficient photovoltaics, transistors, and light emitting diodes. Key to the realisation of such devices is efficient intr... Read More about On-surface polymerisation and self-assembly of DPP-based molecular wires.