Skip to main content

Research Repository

Advanced Search

All Outputs (10)

In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray (2020)
Journal Article
Bano, S., Romero, A. R., Grant, D., Nommeots-Nomm, A., Scotchford, C., Ahmed, I., & Hussain, T. (2021). In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray. Surface and Coatings Technology, 407, Article 126764. https://doi.org/10.1016/j.surfcoat.2020.126764

ICIE16 and 13-93 bioactive glasses have been proposed as alternative chemically stable compositions in physiological fluid keeping bioactivity comparable to Bioglass®. ICIE16 and 13-93 bioactive glasses coatings were produced via an emerging suspensi... Read More about In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray.

Yttrium doped phosphate-based glasses: structural and degradation analyses (2020)
Journal Article
Arafat, A., Samad, S. A., Titman, J. J., Lewis, A. L., Barney, E. R., & Ahmed, I. (2020). Yttrium doped phosphate-based glasses: structural and degradation analyses. Biomedical Glasses, 6(1), 34-49. https://doi.org/10.1515/bglass-2020-0004

This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)-25(CaO)-(30-x)(Na2O)-x(Y2O3) (0?x?5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural... Read More about Yttrium doped phosphate-based glasses: structural and degradation analyses.

Flame spheroidisation of dense and porous Ca2Fe2O5 microspheres (2020)
Journal Article
Molinar Díaz, J., Samad, S. A., Steer, E., Neate, N., Constantin, H., Islam, M. T., …Ahmed, I. (2020). Flame spheroidisation of dense and porous Ca2Fe2O5 microspheres. Materials Advances, 1(9), 3539-3544. https://doi.org/10.1039/d0ma00564a

Compositionally uniform magnetic Ca2Fe2O5 (srebrodolskite) microspheres created via a rapid, single-stage flame spheroidisation (FS) process using magnetite and carbonate based porogen (1:1 Fe3O4:CaCO3) feedstock powders, are described. Two types of... Read More about Flame spheroidisation of dense and porous Ca2Fe2O5 microspheres.

Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres (2020)
Journal Article
Islam, M. T., Macri-Pellizzeri, L., Hossain, K. M. Z., Sottile, V., & Ahmed, I. (2021). Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres. Materials Science and Engineering: C, 120, Article 111668. https://doi.org/10.1016/j.msec.2020.111668

Natural ventilation is a low energy strategy used in many building types. Design approaches are mature but are dependent on variables with high uncertainty, such as the aerodynamic behaviour of purpose provided openings (PPOs), which need improved ch... Read More about Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres.

Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings (2020)
Journal Article
Wadge, M. D., McGuire, J., Hanby, B. V., Felfel, R. M., Ahmed, I., & Grant, D. M. (2021). Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings. Journal of Magnesium and Alloys, 9(1), 336-350. https://doi.org/10.1016/j.jma.2020.07.001

A novel approach was developed to reduce the corrosion rate of magnesium (Mg) metal, utilising titanate coatings. Magnetron sputtering was used to deposit ca. 500 nm titanium (Ti) coatings onto pure Mg discs, followed by hydrothermal conversion and i... Read More about Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings.

Patient Perspectives on Use of Stem Cells to Treat Osteoporosis (2020)
Journal Article
Brown, H. I., Clutton-Brock, T., Walker, D., Sahota, O., Scammell, B. E., & Ahmed, I. (2020). Patient Perspectives on Use of Stem Cells to Treat Osteoporosis. Journal of Regenerative Medicine & Biology Research, 1(1), 1-20

Osteoporosis is a systemic skeletal disease leading to increased risk of fragility fractures. These fractures lead to significant patient morbidity, increased mortality and substantial health and social care costs. The use of stem cells for cell-base... Read More about Patient Perspectives on Use of Stem Cells to Treat Osteoporosis.

The Use of Biomaterials in Internal Radiation Therapy (2020)
Journal Article
Milborne, B., Arafat, A., Layfield, R., Thompson, A., & Ahmed, I. (2020). The Use of Biomaterials in Internal Radiation Therapy. Recent Progress in Materials, 2(2), https://doi.org/10.21926/rpm.2002012

Radiotherapy has become one of the most prominent and effective modalities for cancer treatment and care. Ionising radiation, delivered either from external or internal sources, can be targeted to cancerous cells causing damage to DNA that can induce... Read More about The Use of Biomaterials in Internal Radiation Therapy.

Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility (2020)
Journal Article
Coe, S. C., Wadge, M. D., Felfel, R. M., Ahmed, I., Walker, G. S., Scotchford, C. A., & Grant, D. M. (2020). Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility. Coatings, 10(2), Article 190. https://doi.org/10.3390/coatings10020190

In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently... Read More about Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility.

Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective (2020)
Journal Article
Woodliffe, J. L., Ferrari, R. S., Ahmed, I., & Laybourn, A. (2020). Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 428, Article 213578. https://doi.org/10.1016/j.ccr.2020.213578

Metal-organic frameworks (MOFs) are highly porous materials consisting of metal ions or clusters linked by organic molecules. The high value of MOFs arises from the amount of empty space within their structure (up to 90%) and their tuneable structure... Read More about Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective.

Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films (2020)
Journal Article
Wadge, M. D., Turgut, B., Murray, J. W., Stuart, B. W., Felfel, R. M., Ahmed, I., & Grant, D. M. (2020). Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films. Journal of Colloid and Interface Science, 566, 271-283. https://doi.org/10.1016/j.jcis.2020.01.073

© 2020 The Authors Titanate structures have been widely investigated as biomedical component surfaces due to their bioactive, osteoinductive and antibacterial properties. However, these surfaces are limited to Ti and its alloys, due to the nature of... Read More about Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films.