Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites (2022)
Working Paper
he, Y., Begines, B., Trindade, G., Abdi, M., dubern, J., Prina, E., …Wildman, R. Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative des... Read More about Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites.

3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release (2017)
Journal Article
Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R. D., Ashcroft, I., …Roberts, C. J. (2017). 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled Release, 261, 207-215. https://doi.org/10.1016/j.jconrel.2017.06.025

A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet pri... Read More about 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.