Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction (2024)
Journal Article

A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form d... Read More about Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction.

The significance of multipole interactions for the stability of regular structures composed from charged particles. (2024)
Journal Article

Identifying the forces responsible for stabilising binary particle lattices is key to the controlled fabrication of many new materials. Experiments have shown that the presence of charge can be integral to the formation of ordered arrays; however, a... Read More about The significance of multipole interactions for the stability of regular structures composed from charged particles..

Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction (2024)
Working Paper

Minimizing our reliance on bulk precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a... Read More about Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction.