Skip to main content

Research Repository

Advanced Search

All Outputs (5)

MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life (2020)
Journal Article
Guttery, D. S., Ramaprasad, A., Ferguson, D. J. P., Zeeshan, M., Pandey, R., Brady, D., Holder, A. A., Pain, A., & Tewari, R. (2020). MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life. Cells, 9(12), Article 2590. https://doi.org/10.3390/cells9122590

The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional... Read More about MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life.

Plasmodium berghei Kinesin-5 Associates With the Spindle Apparatus During Cell Division and Is Important for Efficient Production of Infectious Sporozoites (2020)
Journal Article
Zeeshan, M., Brady, D., Stanway, R. R., Moores, C., Holder, A. A., & Tewari, R. (2020). Plasmodium berghei Kinesin-5 Associates With the Spindle Apparatus During Cell Division and Is Important for Efficient Production of Infectious Sporozoites. Frontiers in Cellular and Infection Microbiology, 10, Article 583812. https://doi.org/10.3389/fcimb.2020.583812

© Copyright © 2020 Zeeshan, Brady, Stanway, Moores, Holder and Tewari. Kinesin-5 motors play essential roles in spindle apparatus assembly during cell division, by generating forces to establish and maintain the spindle bipolarity essential for prope... Read More about Plasmodium berghei Kinesin-5 Associates With the Spindle Apparatus During Cell Division and Is Important for Efficient Production of Infectious Sporozoites.

A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission (2020)
Journal Article
Balestra, A. C., Zeeshan, M., Rea, E., Pasquarello, C., Brusini, L., Mourier, T., Subudhi, A. K., Klages, N., Arboit, P., Pandey, R., Brady, D., Vaughan, S., Holder, A. A., Pain, A., Ferguson, D. J., Hainard, A., Tewari, R., & Brochet, M. (2020). A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. eLife, 9, Article e56474. https://doi.org/10.7554/eLife.56474

© 2020, Balestra et al. Cell cycle transitions are generally triggered by variation in the activity of cyclin-dependent kinases (CDKs) bound to cyclins. Malaria-causing parasites have a life cycle with unique cell-division cycles, and a repertoire of... Read More about A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission.

Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation (2020)
Journal Article
Zeeshan, M., Pandey, R., Ferguson, D. J. P., Tromer, E. C., Markus, R., Abel, S., Brady, D., Daniel, E., Limenitakis, R., Bottrill, A. R., Le Roch, K. G., Holder, A. A., Waller, R. F., Guttery, D. S., & Tewari, R. (2020). Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. Journal of Cell Science, 134(5), Article jcs.245753. https://doi.org/10.1242/jcs.245753

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. The genus Plasmodium, the causative agent of malaria, displays remarkable aspects of nuclear division throug... Read More about Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation.

Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission (2020)
Journal Article
Le Roch, K. G., Holder, A. A., Bottrill, A. R., Stanway, R. R., Wall, R. J., Tewari, R., Pandey, R., Abel, S., Boucher, M., Zeeshan, M., Wheatley, S., Batugedara, G., Hollin, T., Daniel, E., Rea, E., Freville, A., Lu, X. M., Gupta, D., & Brady, D. (2020). Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Reports, 30(6), 1883-1897.e6. https://doi.org/10.1016/j.celrep.2020.01.033

Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine... Read More about Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission.