Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine (2024)
Journal Article
Bayraktutan, H., Symonds, P., Brentville, V. A., Moloney, C., Galley, C., Bennett, C. L., …Gurnani, P. (2024). Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials, Article 122647. https://doi.org/10.1016/j.biomaterials.2024.122647

DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of t... Read More about Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine.

Free drug and ROS-responsive nanoparticle delivery of synergistic doxorubicin and olaparib combinations to triple negative breast cancer models (2024)
Journal Article
Cavanagh, R. J., Monteiro, P. F., Moloney, C., Travanut, A., Mehradnia, F., Taresco, V., …Alexander, C. (2024). Free drug and ROS-responsive nanoparticle delivery of synergistic doxorubicin and olaparib combinations to triple negative breast cancer models. Biomaterials Science, 12(7), 1822-1840. https://doi.org/10.1039/d3bm01931d

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro scree... Read More about Free drug and ROS-responsive nanoparticle delivery of synergistic doxorubicin and olaparib combinations to triple negative breast cancer models.

Chain-extension in hyperbranched polymers alters tissue distribution and cytotoxicity profiles in orthotopic models of triple negative breast cancers (2023)
Journal Article
Moloney, C., Mehradnia, F., Cavanagh, R. J., Ibrahim, A., Pearce, A. K., Ritchie, A. A., …Alexander, C. (2023). Chain-extension in hyperbranched polymers alters tissue distribution and cytotoxicity profiles in orthotopic models of triple negative breast cancers. Biomaterials Science, 11, 6545-6560. https://doi.org/10.1039/d3bm00609c

The therapeutic efficacy of nanomedicines is highly dependent on their access to target sites in the body, and this in turn is markedly affected by their size, shape and transport properties in tissue. Although there have been many studies in this ar... Read More about Chain-extension in hyperbranched polymers alters tissue distribution and cytotoxicity profiles in orthotopic models of triple negative breast cancers.

OptoRheo: Simultaneous in situ micro-mechanical sensing and imaging of live 3D biological systems (2023)
Journal Article
Mendonca, T., Lis-Slimak, K., Matheson, A. B., Smith, M. G., Anane-Adjei, A. B., Ashworth, J. C., …Wright, A. J. (2023). OptoRheo: Simultaneous in situ micro-mechanical sensing and imaging of live 3D biological systems. Communications Biology, 6, Article 463. https://doi.org/10.1038/s42003-023-04780-8

Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument... Read More about OptoRheo: Simultaneous in situ micro-mechanical sensing and imaging of live 3D biological systems.