Skip to main content

Research Repository

Advanced Search

All Outputs (32)

Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells (2024)
Journal Article
Comeo, E., Goulding, J., Lin, C.-Y., Groenen, M., Woolard, J., Kindon, N. D., Harwood, C. R., Platt, S., Briddon, S. J., Kilpatrick, L. E., Scammells, P. J., Hill, S. J., & Kellam, B. (2024). Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells. Journal of Medicinal Chemistry, 67(14), 12099–12117. https://doi.org/10.1021/acs.jmedchem.4c00835

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands... Read More about Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells.

A novel and selective fluorescent ligand for the study of adenosine A2B receptors (2024)
Journal Article
Patera, F., Mistry, S. J., Kindon, N. D., Comeo, E., Gouding, J., Kellam, B., Kilpatrick, L. E., Franks, H., & Hill, S. J. (2024). A novel and selective fluorescent ligand for the study of adenosine A2B receptors. Pharmacology Research and Perspectives, 12(4), Article e1223. https://doi.org/10.1002/prp2.1223

Fluorescent ligands have proved to be powerful tools in the study of G protein-coupled receptors in living cells. Here we have characterised a new fluorescent ligand PSB603-BY630 that has high selectivity for the human adenosine A2B receptor (A2BR).... Read More about A novel and selective fluorescent ligand for the study of adenosine A2B receptors.

CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans (2024)
Journal Article
White, C. W., Platt, S., Kilpatrick, L. E., Dale, N., Abhayawardana, R. S., Dekkers, S., …Hill, S. J. (2024). CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Science Signaling, 17(828), Article abl3758. https://doi.org/10.1126/scisignal.abl3758

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and... Read More about CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans.

Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization (2022)
Journal Article
Damaskinaki, F. N., Jooss, N. J., Martin, E. M., Clark, J. C., Thomas, M. R., Poulter, N. S., …Slater, A. (2023). Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization. Journal of Thrombosis and Haemostasis, 21(2), 317-328. https://doi.org/10.1016/j.jtha.2022.11.002

Background: The platelet–signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. T... Read More about Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization.

Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor (2022)
Journal Article
Kok, Z. Y., Stoddart, L. A., Mistry, S. J., Mocking, T. A., Vischer, H. F., Leurs, R., …Kellam, B. (2022). Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor. Journal of Medicinal Chemistry, 65(12), 8258–8288. https://doi.org/10.1021/acs.jmedchem.2c00125

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression, therefore high affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behaviour in vitro an... Read More about Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor.

Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles (2022)
Journal Article
Travanut, A., Monteiro, P. F., Smith, S., Howdle, S. M., Grabowska, A. M., Kellam, B., …Alexander, C. (2022). Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. Journal of Materials Chemistry B, 10, 3895-3905. https://doi.org/10.1039/d2tb00045h

New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological environments. Here, we show... Read More about Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles.

Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2‐adrenoceptor in CRISPR/Cas9 genome‐edited HEK293T cells at low expression levels (2021)
Journal Article
Kellam, B., White, C. W., Goulding, J., Mistry, S. J., Soave, M., Woolard, J., …Hill, S. J. (2021). Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2‐adrenoceptor in CRISPR/Cas9 genome‐edited HEK293T cells at low expression levels. Pharmacology Research and Perspectives, 9(3), Article e00779. https://doi.org/10.1002/prp2.779

Fluorescent ligand technologies have proved to be powerful tools to improve our understanding of ligand-receptor interactions. Here we have characterized a small focused library of nine fluorescent ligands based on the highly selective β2-adrenocepto... Read More about Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2‐adrenoceptor in CRISPR/Cas9 genome‐edited HEK293T cells at low expression levels.

Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor (2021)
Journal Article
Stoddart, L. A., Kilpatrick, L. E., Corriden, R., Kellam, B., Briddon, S. J., & Hill, S. J. (2021). Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor. FASEB Journal, 35(4), Article e21211. https://doi.org/10.1096/fj.202001729rr

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand ac... Read More about Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor.

Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells (2020)
Journal Article
Stoddart, L. A., Kindon, N. D., Otun, O., Harwood, C. R., Patera, F., Veprintsev, D. B., …Kellam, B. (2020). Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells. Communications Biology, 3(1), Article 722. https://doi.org/10.1038/s42003-020-01451-w

© 2020, The Author(s). To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the recept... Read More about Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells.

Using Esterase Selectivity to Determine the in Vivo Duration of Systemic Availability and Abolish Systemic Side Effects of Topical β-Blockers (2020)
Journal Article
Baker, J. G., Fromont, C., Bruder, M., Thompson, K. S., Kellam, B., Hill, S. J., …Fischer, P. M. (2020). Using Esterase Selectivity to Determine the in Vivo Duration of Systemic Availability and Abolish Systemic Side Effects of Topical β-Blockers. ACS Pharmacology & Translational Science, 3(4), 737-748. https://doi.org/10.1021/acsptsci.0c00051

© 2020 American Chemical Society. For disorders of the skin, eyes, ears, and respiratory tract, topical drugs, delivered directly to the target organ, are a therapeutic option. Compared with systemic oral therapy, the benefits of topical treatments i... Read More about Using Esterase Selectivity to Determine the in Vivo Duration of Systemic Availability and Abolish Systemic Side Effects of Topical β-Blockers.

Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists (2020)
Journal Article
Gillis, A., Gondin, A. B., Kliewer, A., Sanchez, J., Lim, H. D., Alamein, C., …Canals, M. (2020). Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists. Science Signaling, 13(625), Article eaaz3140. https://doi.org/10.1126/scisignal.aaz3140

Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of... Read More about Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists.

Meeting report: 27th Annual GP2A Medicinal Chemistry Conference (2019)
Journal Article
Mistry, S. N., Marchand, P., & Kellam, B. (2019). Meeting report: 27th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals, 12(4), Article 179. https://doi.org/10.3390/ph12040179

The 27th annual GP2A (Groupement des Pharmacochimistes de l′Arc Atlantique/Group of Medicinal Chemists in the Atlantic Arc) conference took place from 21 to 23 August 2019, at the East Midlands Conference Centre (University Park, Nottingham, United K... Read More about Meeting report: 27th Annual GP2A Medicinal Chemistry Conference.

Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor (2019)
Journal Article
Fyfe, T. J., Kellam, B., Sykes, D. A., Capuano, B., Scammells, P. J., Lane, J. R., …Mistry, S. N. (2019). Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor. Journal of Medicinal Chemistry, 62(21), 9488-9520. https://doi.org/10.1021/acs.jmedchem.9b00864

Haloperidol is a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side-effects (EPS) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with c... Read More about Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor.

Modulators of CXCR4 and CXCR7/ACKR3 Function (2019)
Journal Article
Adlere, I., Caspar, B., Arimont, M., Dekkers, S., Visser, K., Stuijt, J., …Leurs, R. (2019). Modulators of CXCR4 and CXCR7/ACKR3 Function. Molecular Pharmacology, 96(6), 737-752. https://doi.org/10.1124/mol.119.117663

Copyright © 2019 by The Author(s). The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for hu... Read More about Modulators of CXCR4 and CXCR7/ACKR3 Function.

Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor (2019)
Journal Article
Fyfe, T. J., Kellam, B., Mistry, S. N., Scammells, P. J., Lane, J. R., & Capuano, B. (2019). Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor. European Journal of Medicinal Chemistry, 168, 474-490. https://doi.org/10.1016/j.ejmech.2019.01.061

We recently described a structurally novel series of negative allosteric modulators (NAMs) of the dopamine D2 receptor (D2R) based on thieno[2,3-d]pyrimidine 1, showing it can be structurally simplified to reveal low molecular weight, fragment-like N... Read More about Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor.

Nucleoside based self-assembling drugs for localized drug delivery (2018)
Journal Article
Skilling, K. J., Stocks, M. J., Kellam, B., Ashford, M., Bradshaw, T., Burroughs, L., & Marlow, M. (in press). Nucleoside based self-assembling drugs for localized drug delivery. ChemMedChem, https://doi.org/10.1002/cmdc.201800063

We have synthesized a range of gelators based on nucleoside analogues gemcitabine and lamivudine, characterizing representative gels from the series using rheology and TEM. Growth inhibition studies of gemcitabine derivatives confirmed the feasibilit... Read More about Nucleoside based self-assembling drugs for localized drug delivery.

A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor (2018)
Journal Article
Fyfe, T. J., Zarzycka, B., Lim, H. D., Kellam, B., Mistry, S. N., Katrich, V., …Capuano, B. (2019). A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor. Journal of Medicinal Chemistry, 62(1), 174–206. https://doi.org/10.1021/acs.jmedchem.7b01565

Recently, a novel negative allosteric modulator (NAM) of the D 2-like dopamine receptors 1 was identified through virtual ligand screening. This ligand comprises a thieno[2,3-d]pyrimidine scaffold that does not feature in known dopaminergic ligands.... Read More about A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor.

Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation (2018)
Journal Article
Citossi, F., Smith, T., Lee, J. B., Segal, J., Gershkovich, P., Stocks, M. J., …Marlow, M. (in press). Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation. Molecular Pharmaceutics, 15(4), https://doi.org/10.1021/acs.molpharmaceut.7b01106

Low molecular weight gelators (LMWGs) of chemotherapeutic drugs represent a valid alternative to the existing poly-mer-based formulations used for targeted delivery of anticancer drugs. Herein we report the design and development of novel self-assemb... Read More about Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation.

Fluorescently Labeled Morphine Derivatives for Bioimaging Studies (2018)
Journal Article
Lam, R., Gondin, A. B., Canals, M., Kellam, B., Briddon, S. J., Graham, B., & Scammells, P. J. (2018). Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of Medicinal Chemistry, 61(3), 1316-1329. https://doi.org/10.1021/acs.jmedchem.7b01811

Opioids, like morphine, are the mainstay analgesics for the treatment and control of pain. Despite this, they often exhibit severe side effects that limit dose; patients often become tolerant and dependent on these drugs, which remains a major health... Read More about Fluorescently Labeled Morphine Derivatives for Bioimaging Studies.

Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors (2017)
Journal Article
Schwehm, C., Kellam, B., Garces, A., Hill, S. J., Kindon, N., Bradshaw, T. D., …Stocks, M. (2017). Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors. Journal of Medicinal Chemistry, 60(4), https://doi.org/10.1021/acs.jmedchem.6b01801

A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize p... Read More about Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors.