Skip to main content

Research Repository

Advanced Search

All Outputs (47)

Modelling and Prediction of Bacterial Attachment to Polymers (2013)
Journal Article
Epa, V., Hook, A. L., Chang, C., Yang, J., Langer, R., Anderson, D. G., …Winkler, D. A. (2014). Modelling and Prediction of Bacterial Attachment to Polymers. Advanced Functional Materials, 24(14), 2085-2093. https://doi.org/10.1002/adfm.201302877

Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on mat... Read More about Modelling and Prediction of Bacterial Attachment to Polymers.

Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays (2013)
Journal Article
Hook, A. L., Chang, C.-Y., Yang, J., Atkinson, S., Langer, R., Anderson, D. G., …Alexander, M. R. (2013). Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays. Advanced Materials, 25(18), https://doi.org/10.1002/adma.201204936

A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacteria... Read More about Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays.

High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry (2013)
Journal Article
Hook, A. L., Scurr, D. J., Anderson, D. G., Langer, R., Williams, P., Davies, M. C., & Alexander, M. R. (2013). High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry. Surface and Interface Analysis, 45(1), https://doi.org/10.1002/sia.4910

Switchable materials that alter their chemical or physical properties in response to external stimuli allow for temporal control of material-biological interactions, thus, are of interest for many biomaterial applications. Our interest is the discove... Read More about High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry.

Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces (2012)
Journal Article
Epa, V., Yang, J., Mei, Y., Hook, A. L., Langer, R., Anderson, D. G., …Winkler, D. A. (2012). Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. Journal of Materials Chemistry, 39(22), https://doi.org/10.1039/C2JM34782B

Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly... Read More about Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.

Combinatorial discovery of polymers resistant to bacterial attachment (2012)
Journal Article
Hook, A. L., Chang, C.-Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., …Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), 868-875. https://doi.org/10.1038/nbt.2316

Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput... Read More about Combinatorial discovery of polymers resistant to bacterial attachment.

Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray (2011)
Journal Article
Hook, A. L., Yang, J., Chen, X., Roberts, C. J., Mei, Y., Anderson, D. G., …Davies, M. C. (2011). Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray. Soft Matter, 7, https://doi.org/10.1039/c1sm06063e

Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with disparate hydrophilicities that... Read More about Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray.

High throughput methods applied in biomaterial development and discovery (2010)
Journal Article
Hook, A. L., Anderson, D. G., Langer, R., Williams, P., Davies, M. C., & Alexander, M. R. (2010). High throughput methods applied in biomaterial development and discovery. Biomaterials, 31(2), https://doi.org/10.1016/j.biomaterials.2009.09.037

The high throughput discovery of new materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal material that fulfils a particular biomedical application. Here we review the... Read More about High throughput methods applied in biomaterial development and discovery.