Skip to main content

Research Repository

Advanced Search

All Outputs (10)

In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise (2019)
Journal Article
May, D., Aktas, A., Advani, S., Berg, D., Endruweit, A., Fauster, E., …Ziegmann, G. (2019). In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise. Composites Part A: Applied Science and Manufacturing, 121, 100-114. https://doi.org/10.1016/j.compositesa.2019.03.006

Efficient process design for Liquid Composite Moulding requires knowledge of the permeability, which quantifies textile conductance for liquid flow. Yet, existing textile characterization methods have not yet been standardized, although good progress... Read More about In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise.

Influence of the micro-structure on saturated transverse flow in fibre arrays (2018)
Journal Article
Gommer, F., Endruweit, A., & Long, A. C. (2018). Influence of the micro-structure on saturated transverse flow in fibre arrays. Journal of Composite Materials, 52(18), 2463-2475. https://doi.org/10.1177/0021998317747954

This study analyses the influence of the random filament arrangement in fibre bundles on the resin flow behaviour. Transverse steady-state resin flow which occurs behind a liquid resin flow front was simulated numerically through statistically equiva... Read More about Influence of the micro-structure on saturated transverse flow in fibre arrays.

Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements (2017)
Journal Article
Endruweit, A., Zeng, X., Matveev, M. Y., & Long, A. C. (2018). Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements. Composites Part A: Applied Science and Manufacturing, 104, https://doi.org/10.1016/j.compositesa.2017.10.020

Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities have a maximum at minimum size of elo... Read More about Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements.

“BAM”: a collaborative R&D project for the development of a simulation based solution for the design and manufacture of 3D woven composites (2017)
Conference Proceeding
Said, R., Müller, S., de Luca, P., Thompson, A., El Said, B., Hallett, S., …Potluri, P. (2017). “BAM”: a collaborative R&D project for the development of a simulation based solution for the design and manufacture of 3D woven composites.

Breakthrough Aerospace Materials (BAM) is a collaborative R&D project based in the UK [1]; led by industry and co-funded by the British Government via the Innovate-UK under its Aerospace Technology Institute (ATI) R&T Programme. The overall objective... Read More about “BAM”: a collaborative R&D project for the development of a simulation based solution for the design and manufacture of 3D woven composites.

Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints (2015)
Journal Article
Chen, S., Harper, L., Endruweit, A., & Warrior, N. (2015). Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints. Composites Part A: Applied Science and Manufacturing, 76, https://doi.org/10.1016/j.compositesa.2015.05.006

A genetic algorithm is coupled with a finite element model to optimise the arrangement of constraints for a composite press-forming study. A series of springs are used to locally apply in-plane tension through clamps to the fibre preform to control m... Read More about Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints.

Inter-ply stitching optimisation of highly drapeable multi-ply preforms (2015)
Journal Article
Chen, S., Endruweit, A., Harper, L., & Warrior, N. (2015). Inter-ply stitching optimisation of highly drapeable multi-ply preforms. Composites Part A: Applied Science and Manufacturing, 71, https://doi.org/10.1016/j.compositesa.2015.01.016

An efficient finite element model has been developed in Abaqus/Explicit to solve highly non-linear fabric forming problems, using a non-orthogonal constitutive relation and membrane elements to model bi-axial fabrics. 1D cable-spring elements have be... Read More about Inter-ply stitching optimisation of highly drapeable multi-ply preforms.

Through-thickness permeability study of orthogonal and angle-interlock woven fabrics (2014)
Journal Article
Xiao, X., Endruweit, A., Zeng, X., Hu, J., & Long, A. C. (2015). Through-thickness permeability study of orthogonal and angle-interlock woven fabrics. Journal of Materials Science, 50(3), https://doi.org/10.1007/s10853-014-8683-4

Three-dimensional (3D) woven textiles, including orthogonal and angle-interlock woven fabrics, exhibit high inter-laminar strength in addition to good in-plane mechanical properties and are particularly suitable for lightweight structural application... Read More about Through-thickness permeability study of orthogonal and angle-interlock woven fabrics.

Effect of specimen history on structure and in-plane permeability of woven fabrics (2014)
Journal Article
Endruweit, A., Zeng, X., & Long, A. C. (2015). Effect of specimen history on structure and in-plane permeability of woven fabrics. Journal of Composite Materials, 49(13), https://doi.org/10.1177/0021998314536070

Before being processed into composites, reinforcement fabrics may undergo repeated involuntary deformation, the complete sequence of which is here referred to as specimen history. To mimic its effect, fabric specimens were subjected to sequences of d... Read More about Effect of specimen history on structure and in-plane permeability of woven fabrics.

Analysis of filament arrangements and generation of statistically equivalent composite micro-structures (2014)
Journal Article
Gommer, F., Endruweit, A., & Long, A. C. (2014). Analysis of filament arrangements and generation of statistically equivalent composite micro-structures. Composites Science and Technology, 99, https://doi.org/10.1016/j.compscitech.2014.05.008

An efficient method to describe and quantify the filament arrangement in fibre bundles based on the analysis of micrographs was developed. Quantitative measurement of relative filament positions indicated that the initially random arrangement of fila... Read More about Analysis of filament arrangements and generation of statistically equivalent composite micro-structures.

Advanced geometry modelling of 3D woven reinforcements in polymer composites: processing and performance analysis (2012)
Conference Proceeding
Zeng, X., Brown, L. P., Endruweit, A., & Long, A. C. (2012). Advanced geometry modelling of 3D woven reinforcements in polymer composites: processing and performance analysis.

Numerical methods have become increasingly effective tools for analysis and design of composite materials. This study investigates how the inclusion of geometrical variations in modelling 3D woven fabrics affects the accuracy of numerical predictions... Read More about Advanced geometry modelling of 3D woven reinforcements in polymer composites: processing and performance analysis.