Dr SUSANNE PUMPLUEN Susanne.Pumpluen@nottingham.ac.uk
ASSOCIATE PROFESSOR
Fast-decodable MIDO codes from non-associative algebras
Pumpluen, Susanne; Steele, Andrew
Authors
Andrew Steele
Abstract
By defining a multiplication on a direct sum of n copies of a given cyclic division algebra, we obtain new unital non-associative algebras. We employ their left multiplication to construct rate-n and rate-2 fully diverse fast ML-decodable space-time block codes for a Multiple-Input-Double-Output (MIDO) system. We give examples of fully diverse rate-2 4×2, 6×2, 8×2 and 12×2 space-time block codes and of a rate-3 6×2 code. All are fast ML-decodable. Our approach generalises the iterated codes in Markin and Oggier.
Citation
Pumpluen, S., & Steele, A. (2015). Fast-decodable MIDO codes from non-associative algebras. International Journal of Information and Coding Theory, 3(1), https://doi.org/10.1504/IJICOT.2015.068695
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 7, 2014 |
Publication Date | Jan 1, 2015 |
Deposit Date | Jun 21, 2016 |
Publicly Available Date | Jun 21, 2016 |
Journal | International Journal of Information and Coding Theory |
Print ISSN | 1753-7703 |
Electronic ISSN | 1753-7711 |
Publisher | Inderscience |
Peer Reviewed | Peer Reviewed |
Volume | 3 |
Issue | 1 |
DOI | https://doi.org/10.1504/IJICOT.2015.068695 |
Keywords | Iterated space-time code constructions, nonassociative division algebras, fastdecodable, rate n, MIDO system |
Public URL | https://nottingham-repository.worktribe.com/output/992873 |
Publisher URL | http://www.inderscience.com/offer.php?id=68695 |
Contract Date | Jun 21, 2016 |
Files
FastDecodableMIDOcodes.pdf
(253 Kb)
PDF
You might also like
A parametrization of nonassociative cyclic algebras of prime degree
(2024)
Journal Article
Nonassociative cyclic algebras and the semiassociative Brauer monoid
(2024)
Journal Article
A generalization of the first Tits construction
(2024)
Journal Article
Albert’s twisted field construction using division algebras with a multiplicative norm
(2024)
Journal Article
Division algebras and MRD codes from skew polynomials
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search