C. Brown
Irreducible skew polynomials over domains
Brown, C.; Pumpluen, S.
Abstract
Let S be a domain and R = S[t; σ, δ] a skew polynomial ring, where σ is an injective endomorphism of S and δ a left σ-derivation. We give criteria for skew polynomials f ∈ R of degree less or equal to four to be irreducible. We apply them to low degree polynomials in quantized Weyl algebras and the quantum planes. We also consider f (t) = t m − a ∈ R.
Citation
Brown, C., & Pumpluen, S. (2021). Irreducible skew polynomials over domains. Analele Universităţii "Ovidius" Constanta - Seria Matematica, 29(3), 75–89. https://doi.org/10.2478/auom-2021-0035
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 30, 2021 |
Online Publication Date | Nov 23, 2021 |
Publication Date | 2021-11 |
Deposit Date | Mar 23, 2024 |
Publicly Available Date | Mar 26, 2024 |
Journal | Analele Universităţii "Ovidius" Constanta - Seria Matematica |
Print ISSN | 1224-1784 |
Electronic ISSN | 1844-0835 |
Publisher | Sciendo |
Peer Reviewed | Peer Reviewed |
Volume | 29 |
Issue | 3 |
Pages | 75–89 |
DOI | https://doi.org/10.2478/auom-2021-0035 |
Public URL | https://nottingham-repository.worktribe.com/output/5507755 |
Publisher URL | https://sciendo.com/article/10.2478/auom-2021-0035 |
Files
Irreduciblepols2021
(517 Kb)
PDF
Licence
https://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
A parametrization of nonassociative cyclic algebras of prime degree
(2024)
Journal Article
A generalization of the first Tits construction
(2024)
Journal Article
Albert’s twisted field construction using division algebras with a multiplicative norm
(2024)
Journal Article
Division algebras and MRD codes from skew polynomials
(2023)
Journal Article
The norm of a skew polynomial
(2021)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search