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Irreducible skew polynomials over domains

C. Brown and S. Pumplün

Abstract

Let S be a domain and R = S[t;σ, δ] a skew polynomial ring, where
σ is an injective endomorphism of S and δ a left σ-derivation. We give
criteria for skew polynomials f ∈ R of degree less or equal to four to be
irreducible. We apply them to low degree polynomials in quantized Weyl
algebras and the quantum planes. We also consider f(t) = tm − a ∈ R.

Introduction

Let R = S[t;σ, δ], where σ is an injective endomorphism of S and δ a left
σ-derivation. A sequence of well-known papers by Lam, Leroy and others
greatly contributed to our understanding of skew polynomials over division
rings and their factorization behaviour, starting with [13]. Some earlier results
are contained in [4, 6, 14]. More recently, two general algorithms for computing
the bound of a skew polynomial over a skew field were given in [9]. As an
application, a criterion for deciding whether a bounded skew polynomial is
irreducible was developed. The computational method presented there heavily
relies on finding the zero divisors in certain central simple algebras and is only
applicable for certain set-ups, where the input data S, σ and δ are effective and
computable. It works for bounded skew polynomials. However, most of the
results on the irreducibility of skew polynomials in R obtained so far assume
that S is a division algebra. Some first results on factoring certain skew
polynomials of degree two in quantum planes and quantized Weyl algebras
were collected in [8, 11, 7].
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In this note, S is a domain, i.e., a unital ring without non-trivial zero
divisors. We look at some skew polynomials f of low degree inR and when they
are irreducible. We briefly consider the skew polynomial f(t) = tm − a ∈ R
as well. This way we hope to give the reader a tool kit to be generalized and
used also on higher degree polynomials, as well as a collection of examples of
irreducible polynomials.

The paper is organized as follows: In Section 1, we collect some necessary
and sufficient criteria for skew polynomials in S[t;σ, δ] of degree less than
five to be irreducible, adjusting well known results for skew polynomials over
division rings, whose proofs carry over without problems. The situation is
easiest when S is a right Ore domain. To see if f ∈ R to be irreducible, we
can simply check if f is irreducible in D[t;σ, δ], where D is the right ring of
fractions of S. We employ this approach for f(t) = tm − a ∈ S[t;σ, δ]. In
Section 2, we systematically look at irreducibility criteria for polynomials of
degree two and three in K[y][t;σ]. Following [1, 2, 3], we define Ah = K[y][t; δ]
with δ(r) = r′h for some h(y) ∈ K[y], where r′ is the usual derivation of r
with respect to y. For instance, Ay is the universal enveloping algebra of
the two-dimensional non-abelian Lie algebra. The algebra Ay2 is also known
as the Jordan plane which appears in noncommutative algebraic geometry.
Irreducible polynomials of degree two and three as well as f(t) = tm−a in the
quantum plane, and irreducible skew polynomials of degree two in a quantized
Weyl algebra and in Ah are then considered in Section 3.

In particular, a monic polynomial f ∈ K[t] of degree two or three is ir-
reducible in the quantum plane K[y][t;σ] if and only if it is irreducible in
K[t] (Corollary 12), and a degree two polynomial f ∈ K[t] is irreducible in
the quantized Weyl algebra K[y][t;σ, δ] if and only if it is irreducible in K[t]
(Corollary 15).

1 Irreducibility criteria for polynomials of low degree in
S[t;σ, δ] where S is a domain

Let S be a domain, σ an injective endomorphism of S and δ a left σ-derivation
of S, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈
S. The skew polynomial ring R = S[t;σ, δ] is the set of skew polynomials
g(t) = a0 + a1t + · · · + ant

n with ai ∈ S, with term-wise addition, where the
multiplication is defined via ta = σ(a)t+ δ(a) for all a ∈ S [15]. That means,

atnbtm =

n∑
j=0

a(∆n,j b)t
m+j
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for all a, b ∈ S, where the map ∆n,j is defined recursively via

∆n,j = δ(Sn−1,j) + σ(∆n−1,j−1),

with ∆0,0 = idS , ∆1,0 = δ, ∆1,1 = σ. Thus ∆n,j is the sum of all polynomials
in σ and δ of degree j in σ and degree n − j in δ [12, p. 2]. If δ = 0, then
∆n,n = σn. Define S[t;σ] = S[t;σ, 0].

For f(t) = a0 + a1t + · · · + ant
n ∈ R with an 6= 0 define deg(f) = n and

deg(0) = −∞. An element f ∈ R is irreducible in R if it is not a unit and it has
no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f)
such that f = gh.

f ∈ R is bounded if there exists 0 6= f∗ ∈ R such that Rf∗ = f∗R is the
largest two-sided ideal of R contained in Rf . The element f∗ is determined
by f up to multiplication on the left by elements of S×.

1.1

Since S is a domain, we have deg(gh) = deg(g)+deg(h) for all g, h ∈ S[t;σ, δ].
This implies that some results hold for f , which were so far only shown for
S a division algebra. We start by collecting them here for the convenience of
the reader.

Theorem 1. (proved analogously as [5, Theorem 25, Theorem 31]) (i) f(t) =
t2 − a1t− a0 ∈ S[t;σ] is irreducible if and only if σ(b)b− a1b− a0 6= 0 for all
b ∈ S.
(ii) Suppose σ ∈ Aut(S). Then f(t) = t3−a2t2−a1t−a0 ∈ S[t;σ] is irreducible
if and only if

σ2(b)σ(b)b− σ2(b)σ(b)a2 − σ2(b)σ(a1)− σ2(a0) 6= 0,

and
σ2(b)σ(b)b− a2σ(b)b− a1b− a0 6= 0

for all b ∈ S.
(iii) Suppose σ ∈ Aut(S), then f(t) = t3−a ∈ S[t;σ] is irreducible if and only
if σ2(b)σ(b)b 6= a for all b ∈ S.
(iv) Suppose σ ∈ Aut(S), then f(t) = t4 − a3t3 − a2t2 − a1t − a0 ∈ S[t;σ] is
irreducible if and only if

σ3(b)σ2(b)σ(b)b+ a3σ
2(b)σ(b)b+ a2σ(b)b+ a1b+ a0 6= 0, (1)

and

σ3(b)σ2(b)σ(b)b+ σ3(b)σ2(b)σ(b)a3

+ σ3(b)σ2(b)σ(a2) + σ3(b)σ2(a1) + σ3(a0) 6= 0,
(2)
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for all b ∈ S, and for every c, d ∈ S, we have either

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d) + a3(σ(d) + σ(c)c) + a2c+ a1 6= 0, (3)

or
σ2(d)d+ σ2(c)σ(c)d+ a3σ(c)d+ a2d+ a0 6= 0. (4)

That means in Theorem 1 (iv), the skew polynomial f(t) is irreducible if
and only if (1) and (2) and ((3) or (4)) holds.

Corollary 2. (proved analogously as [5, Corollary 33]) Suppose σ ∈ Aut(S).
Then f(t) = t4 − a ∈ S[t;σ] is reducible if and only if

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d) = 0 and σ2(d)d+ σ2(c)σ(c)d = a,

for some c, d ∈ S.

We now recursively define sequences of maps: Ni,Mi : S → S for i ≥ 0.
For the definition of the maps Mi we assume that σ ∈ Aut(S). The maps are
given via

N0(b) = 1, Ni+1(b) = σ(Ni(b))b+ δ(Ni(b)),

i.e., N1(b) = b, N2(b) = σ(b)b+ δ(b), . . . and by

M0(b) = 1, Mi+1(b) = bσ−1(Mi(b))− δ(σ−1(Mi(b))),

i.e., M1(b) = b, M2(b) = bσ−1(b)− δ(σ−1(b)), . . . [13].

Let f(t) = tm −
∑m−1

i=0 ait
i ∈ S[t;σ, δ]. Then (t− b)|rf(t) is equivalent to

Nm(b)−
∑m−1

i=0 aiNi(b) = 0 which is proved analogously as [13, Lemma 2.4].
If σ ∈ Aut(S), we can also view R = S[t;σ, δ] as a right polynomial ring

and write f(t) = tm −
∑m−1

i=0 ait
i ∈ R in the form f(t) = tm −

∑m−1
i=0 tia′i

for some uniquely determined a′i ∈ S. The remainder after dividing f(t) on

the left by t − b is then given by Mm(b) −
∑m−1

i=0 Mi(b)a
′
i which is proved

analogously as [5, Proposition 49].

Theorem 3. (proved analogously as [5, Theorem 50]) Let σ ∈ Aut(S).
(i) f(t) = t2 − a1t − a0 ∈ S[t;σ, δ] is irreducible if and only if σ(b)b + δ(b) −
a1b− a0 6= 0 for all b ∈ S.
(ii) Suppose f(t) = t3 − a2t2 − a1t− a0 ∈ S[t;σ, δ]. Write f(t) = t3 − t2a′2 −
ta′1− a′0 for some unique a′0, a

′
1, a
′
2 ∈ S. Then f(t) is irreducible if and only if

N3(b)−
2∑

i=0

aiNi(b) 6= 0 and M3(b)−
2∑

i=0

Mi(b)a
′
i 6= 0

for all b ∈ S.
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1.2 Right Ore domains

A domain S is a right Ore domain if aS ∩ bS 6= {0} for all 0 6= a, b ∈ S. The
ring of right fractions of S is a division ring D containing S, such that every
element of D is of the form rs−1 for some r ∈ S and 0 6= s ∈ S. Moreover, σ
and δ extend uniquely to D via

σ(rs−1) = σ(r)σ(s)−1 and δ(rs−1) = δ(r)s−1 − σ(rs−1)δ(s)s−1, (5)

for all r ∈ S, 0 6= s ∈ S by [10, Lemma 1.3]. Note that any integral domain
is a right Ore domain; its ring of right fractions is equal to its quotient field.
In this subsection, we assume that S is a right Ore domain with ring of right
fractions D, σ is an injective endomorphism of S and δ a σ-derivation of S.
Let C(D) denote the center of D.

If S is a right Ore domain, we can take a skew polynomial f ∈ S[t;σ, δ]
and check if it is irreducible in D[t;σ, δ], in which case it will be irreducible in
S[t;σ, δ] as well. We thus obtain the following results as elementary corollaries
of the corresponding results [5, Theorems 39 and 51, Corollary 52]:

Theorem 4. Suppose m is prime and C(D)∩Fix(σ) contains a primitive mth
root of unity.
(i) f(t) = tm − a ∈ S[t;σ] is irreducible if

a 6= σm−1(b) · · ·σ(b)b

for all b ∈ D.
(ii) If char(D) 6= m then f(t) = tm − a ∈ S[t;σ, δ] is irreducible if Nm(b) 6= a
for all b ∈ D.
(iii) Suppose m = 3 and char(D) 6= 3. Then f(t) = t3−a ∈ S[t; δ] is irreducible
if

N3(b) = b3 + 2δ(b)b+ bδ(b) + δ2(b) 6= a,

for all b ∈ D.

2 Irreducibility criteria for some polynomials of degree
two and three in R = K[y][t;σ]

Let K be a field of characteristic not 2. Let R = K[y][t;σ], where y is an
indeterminate and σ an automorphism of the integral domain K[y]. We know
that σ|K = id and σ(y) = αy + β for some α, β ∈ K,α 6= 0. This implies that

σ2(y) = α2y + (αβ + β), . . . , σl(y) = αly +

l∑
i=0

αl−1β.
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Let z = z(y) =
∑n

i=0 ziy
i ∈ K[y], then

σ(z) =

n∑
i=0

zi(αx+ β)i = znα
nyn + · · ·+

n∑
j=0

zjβ
j

has constant term z(β) =
∑n

j=0 zjβ
j and

σ2(z) =

n∑
i=0

ai(a
2y + αβ + β)i = anα

2nyn + · · ·+
n∑

j=0

aj(αβ + β)j

has constant term z(αβ + β) =
∑n

j=0 aj(αβ + β)j =
∑n

j=0 aj(α + 1)jβj .
Continuing in this manner,

σl(z) =

n∑
i=0

ai(α
lx+

l∑
j=0

αl−1βj)i = anα
lnyn + · · ·+

n∑
j=0

aj(

l∑
i=0

αl−1β)j (6)

has constant term z(
∑l

i=0 α
l−1β) =

∑n
j=0 aj(

∑l
i=0 α

l−1β)j for every integer
l ≥ 1. In particular,

σ(z)z = (anα
nyn + · · ·+

n∑
j=0

ajβ
j)(any

n + . . . a0) = a2nα
ny2n + · · ·+ a0z(β),

σ2(z)σ(z)z = (anα
2nxn + · · ·+

n∑
j=0

aj(αβ + β)j)(a2nα
ny2n + · · ·+ a0z(β))

= a3nα
3ny3n + · · ·+ a0z(β)z(αβ + β),

and
σ3(z)σ2(z)σ(z)z

= (znα
3nyn + · · ·+ z(α2β + αβ + β))(z3nα

3ny3n + · · ·+ z0z(β)z(αβ + β))

= z4nα
6ny4n + · · ·+ z0z(β)z(αβ + β)z(α2β + αβ + β).

Note that if β = 0 then the constant term of σl(z) simplifies to a0 and thus
the constant term of σ(z)z to a20, the constant term of σ2(z)σ(z)z to a20, and
the one of σ3(z)σ2(z)σ(z)z to a40.

Applying Theorem 1 this means for instance:

Theorem 5. Let a =
∑s

j=0 djy
j ∈ K[y] and f(t) = t2 − a ∈ K[y][t;σ]. Then

f(t) is irreducible in K[y][t;σ] in the following cases:
(i) a(y) ∈ K[y] has odd degree,
(ii) a(y) ∈ K× \K×2,
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(iii) α = 1, a(y) has even degree with leading coefficient not a square,
(iv) α 6= 1, a(y) has even degree and leading coefficient not of the form c2αs

for some c ∈ K×, and any integer s ≥ 0,
(v) β = 0, a(y) has even degree and d0 6∈ K×2.

Proof. f(t) = t2 − a is irreducible in K[y][t;σ] if and only if σ(z)z 6= a for
all z ∈ K[y]. Now σ(z)z = z2nα

ny2n + · · · + z0z(β) is either constant or a
polynomial of even degree. Thus if a = a(y) ∈ K[y] has odd degree, we know
that σ(z)z 6= a for all z ∈ K[y] which shows (i).
If a ∈ K×, we know that σ(z)z = a is only possible for z = a0 ∈ K in which
case we have σ(z)z = z20 . Thus if a is not a square in K, σ(z)z 6= a for all
z ∈ K[y] which proves (ii).
Suppose next that a =

∑s
j=0 djy

j has even degree. Then σ(z)z = a for some

z ∈ K[y] is equivalent to z2nα
ny2n + · · · + z0z(β) = a for some n, zi ∈ K,

zn 6= 0. This means ds = z2nα
n and d0 = z0z(β).

If d = 1 then for all a of even degree with leading coefficient not a square,
f(t) is irreducible, proving (iii).
If d 6= 1 then this implies that for all a of even degree s = 2n with leading
coefficient not of the form c2αn for some c ∈ K×, f(t) is irreducible, which
shows (iv).

Moreover, σ(z)z = d for some z ∈ K[y] also means d0 = a0z(β). Hence if
b = 0 and d0 6∈ K×2 then f(t) is irreducible. This is (v).

Theorem 6. Let a =
∑s

j=0 djy
j ∈ K[y] and f(t) = t3 − a ∈ K[y][t;σ]. Then

f(t) is irreducible in K[y][t;σ] in the following cases:
(i) a(y) ∈ K[y] has degree not divisible by 3,
(ii) a(y) ∈ K× \K×3,
(iii) α = 1, a(y) has degree divisible by 3 with leading coefficient not a cube,
(iv) α 6= 1, a(y) has degree divisible by 3 and leading coefficient not of the
form c3αs for some c ∈ K×, and any integer s ≥ 0,
(v) β = 0, a(y) has degree divisible by 3 and d0 6∈ K×3.

Proof. f(t) = t3 − a is irreducible in K[y][t;σ] if and only if a 6= σ2(z)σ(z)z
for all z ∈ K[y] by Theorem 1 (iii). Now σ2(z)σ(z)z = z3nα

3ny3n + · · · +
z0z(β)z(αβ + β) is either constant or a polynomial of degree divisible by
3. Thus if a = a(y) ∈ K[y] has degree not divisible by 3, we know that
σ2(z)σ(z)z 6= a for all z ∈ K[y] proving (i).
If a ∈ K×, we know that σ2(z)σ(z)z = a is only possible for z = z0 ∈ K in
which case we have σ(z)z = z30 . Thus if a ∈ K× \K×3, σ2(z)σ(z)z 6= a for all
z ∈ K[y] which shows (ii).
Suppose next that a =

∑s
j=0 djy

j has degree divisible by 3. Then σ2(z)σ(z)z =

a for some z ∈ K[y] is equivalent to z3nα
3ny3n + · · ·+ z0z(β)z(αβ+ β) = a for

some n, zi ∈ K, zn 6= 0. This means ds = z3nα
3n.
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If α = 1 then this implies that for all a of degree divisible by 3 with leading
coefficient not a cube, f(t) is irreducible and we have proved (iii).
If α 6= 1 then this implies that for all a of degree s = 3n with leading coeffi-
cient not of the form c3αn for some c ∈ K×, f(t) is irreducible and we got (iv).
Moreover, since σ2(z)σ(z)z = a for some z ∈ K[y] also means d0 = z0z(β)z(αβ+
β), we know that if β = 0 and d0 6∈ K×3 then f(t) is irreducible. This shows
(v).

Similar results can be obtained for higher degree skew polynomials, the
calculations become more tedious but follow the same pattern.

3 Irreducible polynomials of low degree in a quantum
plane, a quantized Weyl algebra, and in Ah

Let K be a field of characteristic not 2. Let R = K[y][t;σ, δ] where y is
an indeterminate, σ an automorphism of the domain K[y], i.e. σ|K = idK ,
σ(y) = αy + β for some α, β ∈ K,α 6= 0, and δ a left σ-derivation. Then R
is isomorphic to a quantum plane, a quantized Weyl algebra, or the infinite-
dimensional unital associative algebra Ah = K[y][t; idK[y], δ] studied in [1, 2,
3], where δ : K[y] → K[y] is the K-linear derivation δ(r) = r′h for some
h ∈ K[y] and r′ denotes the usual derivative of r ∈ K[y] with respect to y.

3.1 Irreducible polynomials of low degree and f(t) = tm − a in the
quantum plane

σ be the automorphism of K[y] such that σ = idK on K and σ(y) = qy for
some 1 6= q ∈ K×. Then R = K[y][t;σ] is a quantum plane.

Lemma 7. σj(b(y)) = b(qjy) for all j ∈ N and all b(y) ∈ K[y].

Proof. If b(y) = b0 + b1y + . . .+ bly
l ∈ K[y], then

σj(b(y)) = σj(b0) + σj(b1y) + . . .+ σj(bly
l) = b0 + b1σ

j(y) + . . .+ blσ
j(yl)

= b0 + b1q
jy + . . .+ bl(q

jy)l = b(qjy)

as in Equation (6).

Lemma 7 and Theorem 1 immediately yield:

Proposition 8. (i) f(t) = t2−a1(y)t−a0(y) ∈ K[y][t;σ] is irreducible if and
only if

b(qy)b(y)− a1(y)b(y)− a0(y) 6= 0
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for all b(y) ∈ K[y].
(ii) f(t) = t3 − a2(y)t2 − a1(y)t− a0(y) ∈ K[y][t;σ] is irreducible if and only
if

b(q2y)b(qy)b(y)− b(q2y)b(qy)a2(y)− b(q2y)a1(qy)− a0(q2y) 6= 0

and
b(q2y)b(qy)b(y)− b(qy)b(y)a2(y)− b(y)a1(y)− a0(y) 6= 0

for all b(y) ∈ K[y].

Corollary 9. (i) Let f(t) = t2 − a(y) ∈ K[y][t;σ] be such that deg(a(y)) is
odd. Then f(t) is irreducible.
(ii) Let f(t) = t3 − a(y) ∈ K[y][t;σ] be such that a(y) is not constant and
3 - deg(a(y)). Then f(t) is irreducible.

Proof. Let b(y) ∈ K[y].
(i) We know that deg

(
b(qy)b(y)

)
is even or 0 and so b(qy)b(y) 6= a(y). There-

fore f(t) is irreducible by Proposition 8.
(ii) We know that deg

(
b(q2y)b(qy)b(y)

)
is a multiple of 3 or 0 and so

b(q2y)b(qy)b(y) 6= a(q2y) and b(q2y)b(qy)b(y) 6= a(y).

Hence f(t) is irreducible by Proposition 8.

Proposition 10. Let f(t) = t2−a1(y)t−a0(y) ∈ K[y][t;σ] and let ai,0 denote
the constant terms of ai(y), 0 ≤ i ≤ 1.
(i) If deg(a1(y)) > deg(a0(y)), then f(t) is irreducible.
(ii) If t2 − a1,0t− a0,0 ∈ K[t] is irreducible, then f(t) is irreducible.

Proof. f(t) is irreducible if and only if b(qy)b(y) − a1(y)b(y) 6= a0(y) for all
b(y) ∈ K[y] by Proposition 8.
(i) Suppose that a0(y) = b(qy)b(y)− a1(y)b(y) = (b(qy)− a1(y))b(y) for some
b(y) ∈ K[y] and notice that b(y) 6= 0 since a0(y) 6= 0. Then deg(b(qy)−a1(y))
and deg(b(y)) = deg(b(qy)) ≤ deg(a0(y)). Hence deg(a1(y)) ≤ deg(a0(y)).
(ii) A look at the constant terms of the above equation yields the assertion.

Proposition 11. Let f(t) = t3 − a2(y)t2 − a1(y)t− a0(y) ∈ K[y][t;σ] and let
ai,0 denote the constant terms of ai(y), 0 ≤ i ≤ 2. If

t3 − a2,0t2 − a1,0t− a0,0 ∈ K[t]

is irreducible, then f(t) = t3−a2(y)t2−a1(y)t−a0(y) ∈ K[y][t;σ] is irreducible.

Proof. Comparing constants in the two equations of Proposition 8 (ii) imme-
diately yields the assertion.
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Note that K[t] ⊂ K[y][t;σ] and so if f(t) ∈ K[t] is irreducible in K[y][t;σ]
then f(t) is irreducible in K[t]. Thus Propositions 10 and 11 yield:

Corollary 12. Let f ∈ K[t] ⊂ K[y][t;σ].
(i) f(t) = t2−a1t−a0 is irreducible in K[y][t;σ] if and only if it is irreducible
in K[t] if and only if a21 + 4a0 is not a square in K.
(ii) f(t) = t3−a2t2−a1t−a0 is irreducible in K[y][t;σ] if and it is irreducible
in K[t].

The following result yields a large class of irreducible polynomials of degree
m:

Theorem 13. Let m be prime and K contain a primitive mth root of unity.
Let f(t) = tm − a(y) ∈ K[y][t;σ], a(y) =

∑s
j=0 ajy

j 6= 0.
(i) If m - deg(a(y)), then f(t) is irreducible in K[y][t;σ].
(ii) If a0 6∈ K×m, then f(t) is irreducible in K[y][t;σ].
(iii) If as 6∈ K×mqe for every integer e ≥ 0, then f(t) is irreducible in
K[y][t;σ].

Proof. Extend σ to an automorphism

σ(
c

d
) =

σ(c)

σ(d)

of the field of fractions K(y) of K[y] as in (5), for all c, d ∈ K[y], d 6= 0. By
Theorem 4, f is irreducible over K(y)[t;σ] and hence over K[y][t;σ], if

Nm(b(y)) = σm−1(b(y)) · · ·σ(b(y))b(y) 6= a(y)

for all b(y) ∈ K(y). Write b(y) = c(y)/d(y) for some c(y), d(y) ∈ K[y] with
d(y) 6= 0, then

Nm(b(y)) =
c(qm−1y) · · · c(qy)c(y)

d(qm−1y) · · · d(qy)d(y)

by Lemma 7. If Nm(b(y)) /∈ K[y], we immediately conclude Nm(b(y)) 6= a(y)
because a(y) ∈ K[y]. So suppose that Nm(b(y)) ∈ K[y] and Nm(b(y)) = a(y)

for some b(y) = c(y)/d(y) with c(y) =
∑n

j=0 cjy
j 6= 0, d(y) =

∑l
j=0 djy

j 6= 0.
(i) If Nm(b(y)) ∈ K[y], then deg(Nm(b(y))) = mdeg(c(y)) −mdeg(d(y)) is a
multiple of m for all b(y) ∈ K(y) with degc 6= degd. Thus Nm(b(y)) 6= a(y)
for all b(y) ∈ K(y) such that degc 6= degd, and so f is irreducible.
(ii) Comparing constants in the equation Nm(b(y)) = a(y) yields cm0 = a0d

m
0 ,

hence a0 ∈ K×m. Thus if a0 6∈ K×m, f(t) is irreducible.
(iii) Comparing highest terms in the equation Nm(b(y)) = a(y) implies that
as ∈ K×mqe for some integer e ≥ 0.
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3.2 Irreducible polynomials of degree two in the quantized Weyl
algebra

Let K be a field of characteristic not 2, y be an indeterminate and σ be the
automorphism of K[y] such that σ = id on K and σ(y) = qy for q ∈ K×, q 6= 1.
Define

δ(g) =
g(qy)− g(y)

qy − y
for all g ∈ K[y]. The algebra R = K[y][t;σ, δ] is a quantized Weyl algebra.

Proposition 14. f(t) = t2−a1(y)t−a0(y) ∈ K[y][t;σ, δ] is irreducible if and
only if

b(qy)b(y) +
b(qy)− b(y)

qy − y
− a1(y)b(y)− a0(y) 6= 0

for all b(y) ∈ K[y].

Proof. By Lemma 7, we have σ(b(y)) = b(qy). Theorem 3 then yields the
result.

Corollary 15. Let f(t) = t2 − a1(y)t− a0(y) ∈ K[y][t;σ, δ] where a0(y) 6= 0.
(i) Suppose f(t) ∈ K[t]. Then f(t) is irreducible in K[y][t;σ, δ] if and only if
a21 + 4a0 6∈ K× if and only if f(t) is irreducible in K[t].
(ii) Suppose a0(y), a1(y) are such that 2deg(a1(y)) < deg(a0(y)) and deg(a0(y))
is odd. Then f(t) is irreducible in K[y][t;σ, δ]. In particular, if a1 ∈ K and
deg(a0(y)) is odd then f(t) is irreducible.

Proof. By Proposition 14, f(t) is irreducible in K[y][t;σ, δ] if and only if

b(qy)b(y) +
b(qy)− b(y)

qy − y
− a1(y)b(y) 6= a0(y)

for all b(y) ∈ K[y]. this is equivalent to

b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y) 6= a0(y)(qy − y) (7)

for all b(y) ∈ K[y]. Note that (7) is trivially satisfied if b(y) = 0. If b(y) = b ∈
K× then (7) simplifies to

b2 − a1(y)b 6= a0(y). (8)

(i) Suppose a0, a1 ∈ K. If l = deg(b) > 0 then

deg
(
b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y)(qy − y)

)
= (2l + 1) > 1
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and so

b(qy)b(y)(qy − y) + b(qy)− b(y)− a1b(y)(qy − y) 6= a0(qy − y)

for all b(y) ∈ K[y]. Therefore f(t) is irreducible in K[y][t;σ, δ] if and only if
(8) is satisfied for all b ∈ K, which is equivalent to f(t) being irreducible in
K[t], and this holds in turn if and only if a21 + 4a0 is not a square in K.
(ii) Suppose now that 2deg(a1(y)) < deg(a0(y)) and deg(a0(y)) is odd. Then
for all b ∈ K× we have

deg(b2 − a1(y)b) = deg(a1(y)) < deg(a0(y))

unless b = a1(y) ∈ K in which case b2 − a1(y)b ∈ K. In either case (8) is
satisfied.

Put l = deg(b(y)) > 0 then we have to consider 3 cases:
If l = deg(a1(y)) then

deg(b(qy)b(y)(qy − y)) = 2l + 1 = deg(a1(y)b(y)(qy − y))

which implies

deg
(b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y)(qy − y)

qy − y

)
≤ (2l + 1)− 1 = 2deg(a1(y)) < deg(a0(y)).

If l < deg(a1(y)) then

deg(a1(y)b(y)(qy − y)) > deg(b(qy)b(y)(qy − y)), deg(b(qy)), deg(b(y))

which implies

deg
(b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y)(qy − y)

qy − y

)
= deg(a1(y)) + l + 1− 1

= deg(a1(y)) + l < 2deg(a1(y)) < deg(a0(y)).

Finally, if l > deg(a1(y)) then

deg(b(qy)b(y)(qy − y)) > deg(a1(y)b(y)(qy − y)), deg(b(qy)), deg(b(y))

which implies

deg
(b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y)(qy − y)

qy − y

)
= (2l + 1)− 1
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is even.
In all cases we have

b(qy)b(y)(qy − y) + b(qy)− b(y)− a1(y)b(y)(qy − y) 6= a0(y)(qy − y),

therefore f(t) is irreducible.

3.3 Irreducible polynomials of degree two in Ah

Recall that Ah = K[y][t; δ] with δ(r) = r′h for some h(y) ∈ K[y], where r′ is
the usual derivation of r with respect to y. The algebras Ah were comprehen-
sively studied in [1, 2, 3]. Ah is simple if and only if F has characteristic 0
and h ∈ F× [1, Corollary 7.5]. If F has characteristic 0 then Ah is a unique
factorization domain [1, Lemma 7.6].

The irreducibility of a polynomial in Ah clearly depends on the choice of
h:

Proposition 16. f(t) = t2 − a1(y)t − a0(y) ∈ K[y][t; δ] is irreducible if and
only if

b(y)2 + b′(y)h(y)− a1(y)b(y)− a0(y) 6= 0

for all b(y) ∈ K[y].

Proof. We have σ(b(y))b(y) + δ(b(y))−a1(y)b(y)−a0(y) = b(y)2 + b′(y)h(y)−
a1(y)b(y)− a0(y). The assertion follows from Theorem 3.

Corollary 17. Let f(t) = t2 − a1(y)t− a0(y) ∈ K[y][t; δ] and let ai,0 denote
the constant terms of ai(y), 0 ≤ i ≤ 1.
(i) If

deg(a0(y)) > 2max{deg(a1(y)),deg(h(y))− 1}

and deg(a0(y)) is odd, then f(t) is irreducible in K[y][t; δ].
(ii) If h(y) has zero constant term and g(t) = t2− a1,0t− a0,0 is irreducible in
K[t], then f(t) is irreducible in K[y][t; δ].

Proof. f(t) is irreducible in K[y][t; δ] if and only if

b(y)2 + b′(y)h(y)− a1(y)b(y) 6= a0(y) (9)

for all b(y) ∈ K[y] by Proposition 16.
(i) If b(y) = 0 then (9) is satisfied since a0(y) 6= 0. If b(y) ∈ K× then
b′(y)h(y) = 0 which implies

deg
(
b(y)2 + b′(y)h(y)− a1(y)b(y)

)
= deg(a1(y)) < deg(a0(y)),
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unless a1(y) ∈ K in which case b(y)2 + b′(y)h(y) − a1(y)b(y) ∈ K. In either
case (9) is satisfied.

Now suppose l = deg(b(y)) > 0. We consider the following two cases:
If l > max{deg(a1(y)),deg(h(y))− 1} then

deg
(
b(y)2+b′(y)h(y)− a1(y)b(y)

)
= deg(b(y)2) = 2l

> 2max{deg(a1(y)),deg(h(y))− 1}

and is even.
If l ≤ max{deg(a1(y)),deg(h(y))− 1} then

deg
(
b(y)2 + b′(y)h(y)− a1(y)b(y)

)
≤ max{deg(a1(y)) + l,deg(h(y))− 1 + l}
= l + max{deg(a1(y)),deg(h(y))− 1}
≤ 2max{deg(a1(y)),deg(h(y))− 1}.

Therefore if deg(a0(y)) > 2max{deg(a1(y)),deg(h(y)) − 1} and deg(a0(y)) is
odd then (9) is satisfied which implies f(t) is irreducible.
(ii) Suppose there exists some b(y) such that b(y)2 + b′(y)h(y) − a1(y)b(y) =
a0(y). Let b(y) =

∑s
i=0 biy

i. Looking at the constant terms the equation then
yields b20 − a1,0b0 = a0,0. Thus if g(t) = t2 − a1,0t− a0,0 is irreducible in K[t]
there is no such b(y) and the assertion follows.

Corollary 18. Let f(t) = t2 − a(y) ∈ K[y][t; δ] and h(y) ∈ K[y].
(i) Suppose deg(h(y)) ∈ {0, 1}. If deg(a(y)) is odd then f(t) is irreducible.
(ii) Suppose deg(h(y)) = n ≥ 2 and deg(a(y)) ≥ 2n − 2 is odd. Then f(t) is
irreducible.

Proof. Set a1(y) = 0 in Corollary 17 (i).
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[9] J. Gòmez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound
of an Ore polynomial. Applications to factorization. J. Symbolic Comp.
2018, online at https://doi.org/10.1016/j.jsc.2018.04.018

[10] K. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl
algebras. J. Algebra 150 (2) (1992), 324-377.

[11] C. Holtz, K. Price, Normal quadratics in Ore extensions, quantum planes,
and quantized Weyl algebras. Acta Applicandae Mathematicae 108 (1)
(2009), 73-81.

[12] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer
Verlag, Berlin-Heidelberg-New York, 1996.

[13] T. Y. Lam, A. Leroy, Vandermonde and Wroskian matrices over division
rings. J. Alg. 19(2)(1988), 308-336.

[14] J.-C. Petit, Sur certains quasi-corps généralisant un type d’anneau-
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