Skip to main content

Research Repository

Advanced Search

Resonant core spectroscopies of the charge transfer interactions between C60 and the surfaces of Au(111), Ag(111), Cu(111) and Pt(111)

Gibson, Andrew J.; Temperton, Robert H.; O'Shea, James N.; Handrup, Karsten

Resonant core spectroscopies of the charge transfer interactions between C60 and the surfaces of Au(111), Ag(111), Cu(111) and Pt(111) Thumbnail


Authors

Andrew J. Gibson

Robert H. Temperton

Profile image of JAMES O'SHEA

Dr JAMES O'SHEA J.OSHEA@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR AND READER IN PHYSICS

Karsten Handrup



Abstract

Charge transfer interactions between C60 and the metal surfaces of Ag(111), Cu(111), Au(111) and Pt(111) have been studied using synchrotron-based photoemission, resonant photoemission and X-ray absorption spectroscopies. By placing the X-ray absorption and valence band spectra on a common binding energy scale, the energetic overlap of the unoccupied molecular orbitals with the density of states of the underlying metal surface have been assessed in the context of possible charge transfer pathways. Resonant photoemission and resonant Auger data, measuring the valence region as a function of photon energy for C60 adsorbed on Au(111) reveals three constant high kinetic energy features associated with Auger-like core-hole decay involving an electron transferred from the surface to the LUMO of the molecule and electrons from the three highest occupied molecular orbitals, respectively and in the presence of ultra-fast charge transfer of the originally photoexcited molecule to the surface. Data for the C60/Ag(111) surface reveals an additional Auger-like feature arising from a core-hole decay process involving more than one electron transferred from the surface into the LUMO. An analysis of the relative abundance of these core-hole decay channels estimates that on average 2.4 $\pm$ 0.3 electrons are transferred from the Ag(111) surface into the LUMO. A core-hole clock analysis has also been applied to assess the charge transfer coupling in the other direction, from the molecule to the Au(111) and Ag(111) surfaces. Resonant photoemission and resonant Auger data for C60 molecules adsorbed on the Pt(111) and Cu(111) surfaces are shown to exhibit no super-Auger features, which is attributed to the strong modification of the unoccupied molecular orbitals arising from stronger chemical coupling of the molecule to the surface.

Citation

Gibson, A. J., Temperton, R. H., O'Shea, J. N., & Handrup, K. (2017). Resonant core spectroscopies of the charge transfer interactions between C60 and the surfaces of Au(111), Ag(111), Cu(111) and Pt(111). Surface Science, 657, https://doi.org/10.1016/j.susc.2016.11.009

Journal Article Type Article
Acceptance Date Nov 21, 2016
Online Publication Date Nov 27, 2016
Publication Date Mar 1, 2017
Deposit Date Feb 10, 2017
Publicly Available Date Feb 10, 2017
Journal Surface Science
Print ISSN 0039-6028
Electronic ISSN 1879-2758
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 657
DOI https://doi.org/10.1016/j.susc.2016.11.009
Keywords fullerenes, metal surfaces, charge transfer, resonant photoemission, core-hole clock, autoionization
Public URL https://nottingham-repository.worktribe.com/output/970327
Publisher URL http://www.sciencedirect.com/science/article/pii/S0039602816304940
Contract Date Feb 10, 2017

Files





You might also like



Downloadable Citations