Skip to main content

Research Repository

Advanced Search

Application of machine learning for fuel consumption modelling of trucks

Perrotta, Federico; Parry, Tony; Neves, Lu�s C.

Application of machine learning for fuel consumption modelling of trucks Thumbnail


Federico Perrotta

Tony Parry


This paper presents the application of three Machine Learning techniques to fuel consumption modelling of articulated trucks for a large dataset. In particular, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN) models have been developed for the purpose and their performance compared. Fleet managers use telematic data to monitor the performance of their fleets and take decisions regarding maintenance of the vehicles and training of their drivers. The data, which include fuel consumption, are collected by standard sensors (SAE J1939) for modern vehicles. Data regarding the characteristics of the road come from the Highways Agency Pavement Management System (HAPMS) of Highways England, the manager of the strategic road network in the UK. Together, these data can be used to develop a new fuel consumption model, which may help fleet managers in reviewing the existing vehicle routing decisions, based on road geometry. The model would also be useful for road managers to better understand the fuel consumption of road vehicles and the influence of road geometry. Ten-fold cross-validation has been performed to train the SVM, RF, and ANN models. Results of the study shows the feasibility of using telematic data together with the information in HAPMS for the purpose of modelling fuel consumption. The study also shows that although all the three methods make it possible to develop models with good precision, the RF slightly outperforms SVM and ANN giving higher R-squared, and lower error.


Perrotta, F., Parry, T., & Neves, L. C. (2017). Application of machine learning for fuel consumption modelling of trucks.

Conference Name 2017 IEEE International Conference on Big Data
End Date Dec 14, 2017
Acceptance Date Nov 5, 2017
Online Publication Date Jan 15, 2018
Publication Date Dec 11, 2017
Deposit Date Nov 28, 2017
Publicly Available Date Feb 16, 2018
Peer Reviewed Peer Reviewed
Keywords fuel consumption, machine learning, neural networks, random forests, support vector machine, truck fleet management
Public URL
Publisher URL
Related Public URLs
Additional Information Published in: 2017 IEEE International Conference on Big Data (IEEE BigData 2017) IEEE, 2017, ISBN: 9781538627150, pp. 3810-3815, doi:10.1109/BigData.2017.8258382


You might also like

Downloadable Citations