Skip to main content

Research Repository

Advanced Search

Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana

Wang, Chengcheng; Na, GunNam; Bermejo, Eduardo Sanchez; Chen, Yi; Banks, Jo Ann; Salt, David E.; Zhao, Fang-Jie

Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana Thumbnail


Authors

Chengcheng Wang

GunNam Na

Eduardo Sanchez Bermejo

Yi Chen

Jo Ann Banks

David E. Salt

Fang-Jie Zhao



Abstract

Arsenic (As) is an important environmental and food-chain toxin. We investigated the key components controlling As accumulation and tolerance in Arabidopsis thaliana.
We tested the effects of different combinations of gene knockout, including arsenate reductase (HAC1), ?-glutamyl-cysteine synthetase (?-ECS), phytochelatin synthase (PCS1) and phosphate effluxer (PHO1), and the heterologous expression of the As-hyperaccumulator Pteris vittata arsenite efflux (PvACR3), on As tolerance, accumulation, translocation and speciation in A. thaliana.
Heterologous expression of PvACR3 markedly increased As tolerance and root-to-shoot As translocation in A. thaliana, with PvACR3 being localized to the plasma membrane. Combining PvACR3 expression with HAC1 mutation led to As hyperaccumulation in the shoots, whereas combining HAC1 and PHO1 mutation decreased As accumulation. Mutants of ?-ECS and PCS1 were hypersensitive to As and had higher root-to-shoot As translocation. Combining ?-ECS or PCS1 with HAC1 mutation did not alter As tolerance or accumulation beyond the levels observed in the single mutants.
PvACR3 and HAC1 have large effects on root-to-shoot As translocation. Arsenic hyperaccumulation can be engineered in A. thaliana by knocking out the HAC1 gene and expressing PvACR3. PvACR3 and HAC1 also affect As tolerance, but not to the extent of ?-ECS and PCS1.

Citation

Wang, C., Na, G., Bermejo, E. S., Chen, Y., Banks, J. A., Salt, D. E., & Zhao, F. (2018). Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytologist, 217(1), 206-218. https://doi.org/10.1111/nph.14761

Journal Article Type Article
Acceptance Date Jul 26, 2017
Online Publication Date Aug 31, 2017
Publication Date 2018-01
Deposit Date Oct 11, 2017
Publicly Available Date Sep 1, 2018
Journal New Phytologist
Print ISSN 0028-646X
Electronic ISSN 1469-8137
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 217
Issue 1
Pages 206-218
DOI https://doi.org/10.1111/nph.14761
Keywords Arabidopsis thaliana; arsenate reductase; arsenic; arsenic accumulation; arsenite efflux; Pteris vittata; tolerance
Public URL https://nottingham-repository.worktribe.com/output/880739
Publisher URL http://onlinelibrary.wiley.com/doi/10.1111/nph.14761/full

Files






Downloadable Citations