1 Dissecting the components controlling root-to-shoot arsenic translocation in

2 Arabidopsis thaliana

3

- 5 Chengcheng Wang^{1 a}, GunNam Na^{2 a}, Eduardo Sanchez Bermejo³, Yi Chen⁴, Jo Ann
- 6 Banks^{2 b}, David E Salt^{3 b} and Fang-Jie Zhao^{1 b}

7

- 8 ¹ State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of
- 9 Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing,
- 10 210095, China.
- ² Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN
- 12 47907, USA
- ³ School of Biosciences, University of Nottingham, Sutton Bonington Campus,
- 14 Loughborough, Leicestershire LE12 5RD, UK.
- ⁴ Department of Metabolic Biology, John Innes Centre, Norwich Research Park,
- 16 Norwich NR4 7UH, UK

17

- 18 Authors for correspondence:
- 19 Fang-Jie Zhao
- 20 Tel: +86 25 8439 6509
- 21 Email: Fangjie.Zhao@njau.edu.cn

- ^a These authors contributed equally to this work.
- 24 b These authors contributed equally as senior authors to the study.

25 26 27	Su	mmary
28	•	Arsenic (As) is an important environmental and food-chain toxin. We investigated
29		the key components controlling As accumulation and tolerance in Arabidopsis
30		thaliana.
31		
32	•	We tested the effects of different combinations of gene knockout, including
33		arsenate reductase (HAC1), γ -glutamyl-cysteine synthetase (γ -ECS), PC synthase
34		(PCS1) and phosphate effluxer (PHO1), and heterologous expression of the
35		As-hyperaccumulator Pteris vittata arsenite efflux (PvACR3) on As tolerance,
36		accumulation, translocation and speciation in A. thaliana.
37		
38	•	Heterologous expression of <i>PvACR3</i> markedly increased As tolerance and root to
39		shoot As translocation in A. thaliana, with PvACR3 being localised to the plasma
40		membrane. Combining PvACR3 expression with HAC1 mutation led to As
41		hyperaccumulation in the shoots, whereas combining HAC1 and PHO1 mutation
42		decreased As accumulation. Mutants of γ-ECS and PCS1 were hypersensitive to
43		As and had higher root to shoot As translocation. Combining γ -ECS or PCS1 with
44		HAC1 mutation did not alter As tolerance or accumulation beyond the levels
45		observed in the single mutants.
46		
47	•	PvACR3 and HAC1 have large effects on root to shoot As translocation. Arsenic
48		hyperaccumulation can be engineered in A. thaliana by knocking out HAC1 gene
49		and expressing PvACR3. PvACR3 and HAC1 also affect As tolerance, but not to
50		the extent of γ -ECS and PCS1.
51		
52	Ke	y words: arsenic, arsenate reductase, arsenite efflux, arsenic accumulation,

tolerance, Arabidopsis thaliana, Pteris vittata

Introduction

_	_
J	J

56	Arsenic (As) is a toxic metalloid widely distributed in the environment. The transfer
57	of As from soil to the edible parts of crop plants is of great concern as dietary
58	exposure to As can present a significant risk to human health (Meharg et al., 2009;
59	Zhao et al., 2010). Arsenic is present in soil primarily as arsenate [As(V)] or
50	arsenite [As(III)] depending on the prevailing redox conditions. These As species
51	are taken up inadvertently by plant roots via phosphate transporters in the case of
52	As(V) (Shin et al., 2004; González et al., 2005; Wang et al., 2016) or silicic acid
63	transporters (Ma et al., 2008) and some aquaporin channels in the case of As(III)
54	(Isayenkov & Maathuis, 2008; Kamiya et al., 2009; Xu et al., 2015). Although
65	As(V) and As(III) are taken up readily by roots, their translocation from roots to
56	shoots is limited in most plant species studied to date (Raab et al., 2007; Zhao et al.,
67	2009). A small number of fern species are able to hyperaccumulate As in the
58	above-ground parts (Ma et al., 2001; Zhao et al., 2002). These plants are
59	characterised by an exceptionally high ability to transport As from roots to the
70	above-ground tissues (Su et al., 2008; Zhao et al., 2009). Thus, the translocation of
71	As from roots to shoots appears to be the bottleneck controlling As accumulation in
72	the above-ground tissues, although the underlying mechanisms remain unclear.
73	One possible determinant of the As translocation efficiency is the capacity of
74	As(V) reduction in the roots. Recent studies have identified a new class of $As(V)$
75	reductases in plants, named HAC1 or ATQ1, that play an important role in
76	controlling As accumulation in the shoots (Chao et al., 2014; Sanchez-Bermejo et
77	al., 2014; Shi et al., 2016; Xu et al., 2017). In Arabidopsis thaliana, loss of function
78	of HAC1 leads to an approximately 50-fold increase in As accumulation in the
79	shoots during short-term As(V) feeding hydroponic experiments and a 10-fold
30	increase in shoot As concentration after 5-weeks growth in a potting mix spiked
31	with 7.5 mg kg ⁻¹ As(V) (Chao et al., 2014). In rice, oshac1;1 oshac1;2 double
32	mutant and oshac4 single mutant had 2.3 and 3 fold, respectively, higher As
83	concentrations in the shoots compared with wild-type (WT) (Shi et al., 2016; Xu et
	3

al., 2017). There are several possible reasons for the observed effect of the HACs 84 on the root to shoot As translocation. First, HACs reduces As(V) to As(III) to allow 85 the latter to be extruded to the external medium, thus decreasing the cellular As 86 content in the roots available for xylem loading (Chao et al., 2014; Shi et al., 2016; 87 Xu et al., 2017). Second, decreased As(V) reduction in the roots of the HACs 88 89 mutants may allow As(V) to be loaded into the xylem efficiently via phosphate transporters, although this hypothesis has not been tested. Third, As(V) reduction 90 91 catalysed by HACs allows the As(III) to be complexed by thiol compounds and subsequently sequestered in the vacuoles in the roots (Song et al., 2010; Song et al., 92 93 2014), therefore decreasing the mobility of As. There is some evidence that the complexation of As(III) with phytochelatins (PCs) decreases As(III) mobility from 94 roots to shoots in A. thaliana, with the shoot to root As concentration ratio in the PC 95 mutant cad1;3 and the glutathione (GSH) mutant cad1;2 being 5 – 10 fold higher 96 than wild-type plants (Liu et al., 2010). In the As hyperaccumulator P. vittata, As(V) 97 remains the predominant As species in the roots after As(V) exposure and there is 98 99 also very little As(III)-thiol complexation (Zhao et al., 2003; Zhang et al., 2004; 100 Pickering et al., 2006); both of which may contribute to the high efficiency of As translocation in *P. vittata*. 101 102 Another key determinant of the root to shoot As translocation is xylem loading. Both As(III) and As(V) are found in the xylem sap, although there is usually more 103 As(III) than As(V) even when plants are exposed to As(V) (reviewed in Zhao et al., 104 2009). As(V) may be loaded into the xylem via phosphate transporters such as 105 106 PHO1, but pho1 mutants did not show decreased As accumulation in the shoots compared with WT plants (Quaghebeur & Rengel, 2004), suggesting that As(III) is 107 108 the main As species loaded into the xylem in WT plants. As(III) can be loaded into the xylem via NIP3;1 and NIP7;1 in A. thaliana (Xu et al., 2015; Lindsay & 109 Maathuis, 2016). In rice, the silicic acid efflux transporter Lsi2 is also able to 110 111 transport As(III) out of the cells toward the stele for xylem loading (Ma et al., 2008). A high expression of Lsi2 and its polar localisation on the proximal side of the 112 endodermal cells probably explain the relatively high translocation of As(III) in rice 113

114	(Ma et al., 2008). In P. vittata, As(III) was found to be the main form of As in the
115	xylem sap (Su et al., 2008). However, how As(III) is loaded into the xylem in this
116	As hyperaccumulator is still unknown. Indriolo et al. (2010) identified an As(III)
117	efflux transporter, PvACR3, that plays an important role in As(III) tolerance by
118	transporting As(III) into the vacuoles in the gametophyte of <i>P. vittata</i> . Intriguingly,
119	heterologous expression of PvACR3 in A. thaliana increased As translocation from
120	roots to shoots (Chen et al., 2013). Moreover, PvACR3 was found to be localised in
121	the plasma membrane in transgenic A. thaliana, suggesting a role of PvACR3 in
122	mediating As(III) efflux for xylem loading in this heterologous system (Chen et al.,
123	2013). Heterologous expression of the yeast ScACR3 in rice or A. thaliana was
124	found to increase As(III) efflux to the external medium, but the effects on As
125	distribution between roots and shoots were inconsistent (Ali et al., 2012; Duan et al.
126	2012).
127	In the present study, we tested the effects of different combinations of gene
128	knockout and heterologous expression on As accumulation, especially the mobility
129	of As during root-to-shoot translocation, and As tolerance in A. thaliana. The genes
130	tested included the As(V) reductase ($HAC1$), γ -glutamyl-cysteine synthetase
131	(γ-ECS), PC synthase (PCS1), phosphate effluxer (PHO1) and PvACR3. We first
132	tested the effect of <i>PvACR3</i> expression in the WT or <i>hac1</i> mutant background. This
133	was followed by experiments investigating whether PHO1 affects As accumulation
134	in the shoots differently in the WT or <i>hac1</i> background. Finally, we tested the effect
135	of reduced thiol synthesis caused by γ -ECS or PCS1 mutation in combination with
136	HAC1 mutation. Our results show that HAC1 mutation combined with PvACR3
137	expression dramatically increases As accumulation in A. thaliana shoots.

Materials and Methods

Plant materials

Plant materials used included A. thaliana wild-type Columbia-0 (Col-0) and cad1-3

- 144 (PC-deficient mutant), and *cad2-1* (GSH-deficient mutant) (Howden *et al.*, 1995a;
- Howden et al., 1995b), two T-DNA insertion knockout mutants of HAC1
- 146 (GABI_868F11, SM_3_38332 for *hac1-1* and *hac1-2*, respectively) (Chao *et al.*,
- 147 2014), and *pho1-2* mutant (Delhaize & Randall, 1995). All single mutants are in the
- 148 Col-0 background. Double mutants cad2-1 hac1, cad1-3 hac1 and pho1-2 hac1
- were generated by crossing respective single mutants. Homozygous double mutants
- were identified by PCR genotyping of the F₂ progeny (Supplementary Fig. S1,
- 151 Table S1).
- To generate the 35S::PvACR3 construct, PvACR3 (UniProt #FJ751631) was
- cloned into pCC0869, a pBI121-derived plant transformation vector containing 35S
- 154 CaMV promoter. The *PvACR3* gene was PCR amplified with the 5' primer 5'-
- 155 GCTCTAGAATGGAGAACTCAAGCG-3' (XbaI) and the 3' primer 5'- TCCCCC
- 156 GGGCTAAACAGAAGGCCCCTTC-3' (SmaI) using cDNA derived from
- arsenate-grown gametophytes of *P. vittata*, and the resulting PCR fragment
- 158 confirmed by sequencing. The resulting fragment was inserted into XbaI and
- SmaI-linearized pCC0869 vector. A. thaliana (Col-0) was transformed with the
- 35S::PvACR3 construct using Agrobacterium and the floral dip method (Clough &
- Bent, 1998). Homozygous lines were identified in the T3 generation via segregation
- analysis.
- Two approaches were used to generate *HAC1* mutation and *PvACR3* expression
- lines. First, a *PvACR3* expression line (E8) in the Col-0 background was crossed to
- hac1-1 and hac1-2. Homozygous hac1-1 PvACR3 and hac1-2 PvACR3 were
- identified from F2 progeny by PCR genotyping. Second, PvACR3 was expressed in
- hac1 directly. PvACR3 was cloned into the 2X35S promoter cassette of pMDC32
- between AscI and PacI restriction sites by recombination of the following primers:
- 169 5'-CGGGCCCCCCTCGAGGCGCGCCATGGAGAACTCAAGCGCGGAGC-3'
- 170 (AscI) and 5'-
- 171 CCGCTCTAGAACTAGTTAATTAACTAAACAGAAGGCCCCTTCC-3' (PacI),
- using the ClonExpressTM II one step cloning kit (Vazyme). The binary vector
- pMDC32-PvACR3 was transformed into Agrobacterium strain GV3101 by

freeze-thaw method. The Agrobacterium culture was used to transform A. thaliana 174 hac1-2 by Agrobacterium-mediated dip floral transformation (Clough & Bent, 175 1998). Homozygous lines were identified in the T3 generation, and three lines with 176 relatively high levels of *PvACR3* expression in the roots were selected. 177 178 179 Arsenic tolerance assays 180 A. thaliana seeds were surface-sterilized and sown on agar plates containing MS 181 medium (1/2 MS salts, 2% sucrose, pH 5.6, solidified with 1% agar) amended with 182 various concentrations of As(V) or As(III). Each line was replicated in 5 plates. All 183 plates were placed at 4°C in the dark for 2 days to synchronize germination. The 184 plates were then placed vertically in a growth chamber at 22°C with a 16-h light/8-h 185 dark regime. Root length and shoot fresh weight were determined after 2-week 186 growth. 187 188 189 Arsenic uptake and speciation 190 Different lines of A. thaliana were grown hydroponically with 1/5 strength 191 Hoagland nutrient solution (Liu et al., 2010). Four-week old plants were exposed to 192 5 μM As(V) or As(III) for 24 h, with 4 replicates for each line. Phosphate was 193 withheld in the As(V) experiments to facilitate As(V) uptake. As(V) uptake and 194 195 As(III) efflux were estimated by measuring the changes in As speciation in the nutrient solution as described previously (Liu et al., 2010). Roots and shoots were 196 197 harvested for analysis of As speciation and concentration. 198 PvACR3 hac1 and WT seeds were germinated on 1/2 MS medium without As for 1 week. Seedlings were transplanted into an As contaminated soil for 3 weeks. 199 The soil contained 101 mg kg⁻¹ total As due to nearby mining activities. Each pot 200 was filled with 0.3 kg soil and planted with either 4 A. thaliana plants or 1 plant of 201 202 P. vitatta (2-3 frond stage), with 4 replicates per line. PvACR3 hac1 and WT plants were also grown in trays containing a vermiculite based potting compost spiked 203

204	with 10 mg kg ⁻¹ As(V), with 5 replicates per line. Plants were grown in a growth
205	chamber at 22°C with a 16-h light/8-h dark regime. A. thaliana plants were
206	harvested 3 weeks after transplanting, whilst <i>P. vittata</i> plants were harvested 3 and 6
207	weeks after transplanting.
208	
209	RNA extraction and Semi-quantitative RT-PCR
210	
211	Total RNAs were extracted from 10-day-old A. thaliana roots and shoots using the
212	RNeasy plant Mini Kit (Biotech). Reverse transcription was carried out using the
213	R233-01 kit (Vazyme). Semi-quantitative RT-PCR was done in a reaction mixture
214	of 20 µl of 2 X Taq Master Mix (Vazyme) for 30 cycles. Actin2 was used as the
215	reference gene (primer, forward 5'-TCACAGCACTTGCACCAAGCA-3', reverse
216	5'-AACGATTCCTGGACCTGCCTCA-3'). HAC1 and PvACR3 were PCR
217	amplified using the primer sets 5'-GAAGATGTTGAGACCGTTGATGTTT-3'
218	(forward) and 5'-TCACTTTCAAGTTTCAAGTGCCGAT-3' (reverse) for HAC1
219	and 5'-ATGGAGAACTCAAGCGCG-3' (forward) and
220	5'-GACCCCACCCAGCATTTCAT -3' (reverse) for <i>PvACR3</i> .
221	
222	Subcellular localisation of PvACR3
223	
224	To investigate the subcellular localization of PvACR3 expressed in A. thaliana, a
225	35S::PvACR3-GFP fusion construct was generated. The Aequorea coerulescens GFP
226	(AcGFP) coding region was amplified from plasmid pUC-AcGFP and inserted into
227	the SmaI and EcoRI sites of the plasmid pGreen 0299 plant transformation vector to
228	make pGreen-AcGFP constructs. The full-length PvACR3 gene was amplified from P.
229	vittata cDNAs generated from RNA isolated from arsenate treated gametophytes
230	using the primers 5'-GCTCTAGAATGGAGAACTCAAGCG-3'(XbaI, forword) and
231	5'- TCCCCCGGGAACAGAAGGCCCCTTCCTC-3' (SmaI, reverse) then cloned in
232	frame to $AcGFP$. The final construct was confirmed by sequencing. The construct was
233	introduced to A. thaliana (Col-0) by Agrobacterium-mediated transformation. Stably

transformed A. thaliana plants expressing PvACR3-GFP were selected for GFP fluorescence analysis. Images were acquired using a Zeiss LSM 710 laser confocal microscope (Carl Zeiss Co., Germany). To label A. thaliana seedlings with the plasma membrane dye FM4-64 (T13320, Invitrogen), 5-day-old whole seedlings grown on petri dishes were incubated with 1 µM FM4-64 in water for 15 min. Seedlings were rinsed in distilled water and imaged immediately. To further confirm the subcellular localisation of PvACR3, total microsomal membrane fractions were isolated from 4-week-old whole transgenic A. thaliana expressing PvACR3. Aqueous two-phase extractions performed as previously described (Indriolo et al., 2010). Determination of As speciation and total As concentration At the end of As exposure, roots were desorbed of the apoplastic As in an ice-cold solution containing 1 mM K₂HPO₄, 0.5 mM Ca(NO₃)₂ and 5 mM MES (pH 5.5) for 10 min (Xu et al., 2007). Roots and shoots were rinsed with deionized water, blotted dry and weighed. Plant samples were ground in liquid nitrogen to a fine powder. Subsamples (~0.1 g) of the ground materials were extracted with 10 ml of a phosphate buffer solution (2 mM NaH₂PO₄, 0.2 mM Na₂-EDTA, pH 5.5). Arsenic species in the nutrient solution and in the root and shoot extracts were determined using high-performance liquid chromatography linked to inductively coupled plasma mass spectrometry (HPLC-ICP-MS; NexIon 300x, Perkin-Elmer), as described previously (Xu et al., 2007). For the determination of total As concentration in plant samples, plant tissues were washed with deionized water and dried at 65°C for 2 d. Dried plant samples were digested with 5 ml mix acids of HNO₃/HClO₄ (vol:vol = 85:15) in a digestion block. The digests were diluted with 2% HNO₃ and As concentrations were determined using ICP-MS (Perkin Elmer NexION 300x).

263

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Determination of non-protein thiols

264	After 24 h exposure to As(V), A. thaliana roots and shoots were separated and
265	immediately frozen in liquid nitrogen. Non-protein thiol compounds (Cys, GSH,
266	PC ₂ , PC ₃ and PC ₄) were extracted and quantified using a HPLC method with
267	monobromobimance (mBBr) derivatization as described previously (Minocha et al.,
268	2008).
269	
270	Statistical analysis
271	
272	One-way or two-way analysis of variance (ANOVA) was performed to test the
273	significance of treatment effects, followed by comparisons of treatment means
274	using Tukey's HSD test. Data were transformed logarithmically before ANOVA to
275	stabilize the variance where necessary. For the As tolerance assays, the
276	dose-response data were fitted to a log-logistic equation to estimate the effect
277	concentration causing 50% inhibition (EC ₅₀).
278	
279	Results
279 280	Results
	Results Heterologous expression of $PvACR3$ enhances As tolerance and accumulation in A .
280	
280 281	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A</i> .
280 281 282	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A</i> .
280 281 282 283	Heterologous expression of $PvACR3$ enhances As tolerance and accumulation in A . thaliana
280 281 282 283 284	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and
280 281 282 283 284 285	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In
280 281 282 283 284 285 286	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In the absence of As(III), no significant differences in root growth or shoot fresh weight
280 281 282 283 284 285 286 287	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In the absence of As(III), no significant differences in root growth or shoot fresh weight between WT and transgenic lines were observed (Fig. S2c, d). In the presence of toxic
280 281 282 283 284 285 286 287 288	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In the absence of As(III), no significant differences in root growth or shoot fresh weight between WT and transgenic lines were observed (Fig. S2c, d). In the presence of toxic As(III) concentrations (25 - 100 μM As(III)), both lines grew significant better than
280 281 282 283 284 285 286 287 288 289	Heterologous expression of $PvACR3$ enhances As tolerance and accumulation in A . thaliana Two independent lines of transgenic A . thaliana (Col-0) expressing $PvACR3$ (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In the absence of As(III), no significant differences in root growth or shoot fresh weight between WT and transgenic lines were observed (Fig. S2c, d). In the presence of toxic As(III) concentrations (25 - 100 μ M As(III)), both lines grew significant better than WT plants (Fig. S2b, c, d). The EC50 values were estimated from the fitted
280 281 282 283 284 285 286 287 288 289 290	Heterologous expression of <i>PvACR3</i> enhances As tolerance and accumulation in <i>A. thaliana</i> Two independent lines of transgenic <i>A. thaliana</i> (Col-0) expressing <i>PvACR3</i> (E4 and E8) were selected for As(V) and As(III) tolerance assays (Supplementary Fig. S2). In the absence of As(III), no significant differences in root growth or shoot fresh weight between WT and transgenic lines were observed (Fig. S2c, d). In the presence of toxic As(III) concentrations (25 - 100 μM As(III)), both lines grew significant better than WT plants (Fig. S2b, c, d). The EC ₅₀ values were estimated from the fitted dose-response curves (Table 1). Compared with WT, the expression of <i>PvACR3</i>

-5.8 times of those for WT based on root growth, and 2.1 - 2.6 times those for WT 294 based on shoot biomass (Table 1). These results demonstrate that the expression of 295 296 PvACR3 confers both As(III) and As(V) tolerance in A. thaliana. We next investigated the effect of PvACR3 expression on As accumulation in A. 297 thaliana. Plants were grown hydroponically and then exposed to 5 µM As(III) or 298 299 As(V) for 2 days. In the As(III) experiment, the two *PvACR3* transgenic lines accumulated significantly lower concentrations of As (by 35 - 45%) in the roots 300 301 than WT plants, but accumulated 25 - 34 fold higher As concentrations of As in the shoots (Fig. 1a, b). The ratio of shoot to root As concentration was 0.12 - 0.20 in 302 the transgenic lines, compared with 0.003 in WT plants. Similar results were 303 obtained in the As(V) experiment, with the transgenic lines accumulating 28 - 50%304 lower total As in the roots, but 29 - 37 fold higher total As in the shoots than WT 305 306 plants (Fig. 1c, d). The shoot to root As concentration ratio was 0.3 - 0.6 in the transgenic lines, compared with 0.008 in WT plants. Arsenic speciation in root and 307 shoot tissues was determined in the As(V) experiment. As(III) was the predominant 308 309 As species in WT plants, accounting for 92% and 94% of the total As in the roots and shoots, respectively, indicating an efficient As(V) reduction in A. thaliana. 310 Expression of PvACR3 decreased the As(III)% in the roots to 88 - 89%, but 311 increased the As(III)% in the shoots to 95 - 96%. 312 Because PvACR3 encodes an As(III) efflux transporter (Indriolo et al., 2010), 313 we also estimated As(III) efflux from roots to the external medium following As(V) 314 uptake in the As(V) exposure experiment. We found no significant differences 315 between WT and PvACR3 transgenic plants in either As(V) uptake or As(III) efflux, 316 with As(III) efflux accounting for 82 – 85% of the As(V) uptake after 1 day of As(V) 317 exposure (Fig. 1e). 318 To determine whether the expression of *PvACR3* in the root, the shoot or both 319 320 is important in conferring As tolerance in A. thaliana, four types of reciprocal grafts 321 between WT (Col-0) and PvACR3-E8 plants were generated. No significant differences in root growth or shoot fresh weight between the four different graft 322 types grown in the absence of As(III) were observed (Fig. 2). Self-grafted WT 323

plants showed decreased root growth and shoot fresh weight in the presence of 25 μ M As(III) while self-grafted PvACR3-E8 plants did not. When WT shoot scions were grafted to PvACR3-E8 rootstocks, the resulting plants showed As tolerance comparable to that of self-grafted PvACR3-E8 plants grown in the presence of 25 μ M As(III) (Fig. 2). However, when PvACR3-E8 shoot scions were grafted to WT rootstocks, the root growth and shoot fresh weight of the resulting plants were similar to those of self-grafted Col-0 plants grown in the presence of As(III). This experiment demonstrates that As tolerance in PvACR3 expressing plants is driven by the expression of PvACR3 in the root and not the shoot.

PvACR3 is localised to the plasma membrane in transgenic A. thaliana plants

The subcellular localisation of the PvACR3 protein in *A. thaliana* was determined by expressing *PvACR3:AcGFP* under the control of CaMV 35S promoter. Leaves and roots from four independent transformed lines were incubated in the plasma membrane dye FM4-64. Green fluorescence from AcGFP was observed to co-localise with the red fluorescence of FM4-64 in both leaves and roots (Supplementary Fig. S3a), indicating that the PvACR3:AcGFP fusion protein localises to the plasma membrane. Furthermore, *PvACR3:AcGFP* appears to be preferentially expressed in the endodermis and the stele of the transgenic *A. thaliana* roots (Supplementary Fig. S4).

344 S4

The plasma membrane localisation of PvACR3:AcGFP was also confirmed by protein immunoblotting using antibodies to GFP after membrane purification using two-phase extraction (Supplementary Fig. S3b). Membranes collected in the upper phase of the extraction system are enriched in plasma membrane relative to the lower phase as shown by the enrichment of the P-type ATPase plasma membrane marker and the depletion of the V-type ATPase vacuolar membrane marker in the upper phase. The plasma membrane enriched upper phase is also enriched in AcGFP confirming the plasma membrane localisation of the ACR3:AcGFP fusion protein.

354	Combining <i>HAC1</i> mutation with <i>PvACR3</i> expression leads to As
355	hyperaccumulation in A. thaliana
356	
357	Because mutation of <i>HAC1</i> also results in a large increase in As accumulation in the
358	shoots (Chao et al., 2014), we tested the combined effect of HAC1 mutation with
359	PvACR3 expression. We first crossed PvACR3-E8 with two T-DNA insertion HAC1
360	knockout lines and obtained homozygous lines combining PvACR3 expression with
361	HAC1 mutation. The As(V) tolerance results of PvACR3-E8 hac1-1 and
362	PvACR3-E8 hac1-2 are similar, so only the dataset of the former is shown here.
363	Consistent with the results shown in Fig. S2 and those reported by Chao et al.
364	(2014), PvACR3 expression increased As(V) tolerance in A. thaliana, whereas hac1
365	mutants were more sensitive to As(V) than WT plants (Supplementary Fig. S5,
366	Table 1). In this experiment, the highest As(V) concentration (250 μM) did not
367	significantly inhibit root or shoot growth of <i>PvACR3</i> -E8; therefore the exact EC ₅₀
368	could not be estimated (Table 1). Expression of <i>PvACR3</i> in <i>hac1</i> mutants enhanced
369	the As(V) tolerance to a level that was similar to or higher than that of WT plants,
370	but lower than that of $PvACR3$ -E8 plants, especially at the high (250 μ M) As(V)
371	concentration (Fig. S5, Table 1).
372	We then determined As accumulation and speciation in hydroponically grown
373	plants exposed to 5 μ M As(V) for 1 day. <i>HAC1</i> mutation resulted in a 35% decrease
374	in the root As(III) concentration, but a $16-24$ fold increase in the root As(V)
375	concentration, compared with WT (Fig. 3a). The percentage of As(III) in the root
376	(relative to total As) decreased from 90% in WT plants to $19 - 27\%$ in $hac1$ mutants,
377	which is indicative of a loss of function of a key As(V) reductase. PvACR3
378	expression in the Col-0 background decreased As(III) concentration in the roots by
379	74%, but had little effect on the As(V) concentration. Combining <i>PvACR3</i>
380	expression with HAC1 mutation decreased both As(III) and As(V) concentrations in
381	the roots compared with the <i>hac1</i> mutants. <i>HAC1</i> mutation, <i>PvACR3</i> expression and
382	the combination of the two genetic events produced striking phenotypes in As
383	accumulation A thaliana shoots Compared with WT (Col-0) HAC1 mutation and

384	PvACR3 expression increased shoot As concentration by 18 - 19 and 58 fold,
385	respectively, whereas combining the two events increased shoot As concentration
386	by 114 – 117 fold (Fig. 3b). The increase in the shoot As concentration in
387	PvACR3-E8 hac1 plants was more than the additive effect of PvACR3-E8 and hac1
388	alone. In all lines, As(III) was the predominant As species in the shoots (>90%). In
389	this experiment, the shoot to root As concentration ratio increased from 0.002 in
390	WT to approximately 0.015 in <i>hac1</i> mutants and 0.24 in <i>PvACR3-E8 hac1</i> plants.
391	We also determined As(III) efflux from the roots to the external medium following
392	As(V) uptake. In agreement with a previous study (Chao et al., 2014), HAC1
393	mutation greatly decreased As(III) efflux to the external medium (Fig. 3c). By
394	contrast, PvACR3 expression had little effect on this process in either the Col-0 or
395	hac1 background.
396	We also generated PvACR3 expression lines in the hac1 mutant (hac1-2)
397	directly by transgenesis. Three independent lines of <i>PvACR3 hac1-2</i> (E6, E7, E11)
398	were selected for further experiments (Supplementary Fig. S6a). The three
399	transgenic lines, hac1-2 and Col-0 were grown for 3 weeks in a vermiculite-based
400	potting medium amended with or without 10 mg kg ⁻¹ As(V) (Fig. S6b). The
401	addition of 10 mg kg ⁻¹ As(V) inhibited shoot fresh weight of Col-0 and <i>hac1-2</i> by
402	28% and 41%, respectively. The inhibition on the three lines of <i>PvACR3 hac1-2</i>
403	ranged from 31% to 52%, which was not significantly different from that in hac1-2
404	(Fig. 4a). Compared with Col-0, hac1-2 contained 8.5 fold higher total As
405	concentration in the shoots (Fig. 4b). Expression of <i>PvACR3</i> in <i>hac1-2</i> enhanced As
406	accumulation in the shoots much further, to $17-28$ times of that in Col-0. The
407	bioaccumulation factors (shoot to soil As concentration ratio) were 0.2, 2.0 and 4.0
408	- 6.1 in Col-0, hac1-2 and PvACR3 hac1-2, respectively.
409	To assess the As accumulation ability of PvACR3 hac1-2 plants in soil, the
410	three transgenic lines, hac1-2, Col-0 and P. vittata were grown in an
411	As-contaminated soil. Shoot biomass after 3-week growth was not significantly
412	different between different A. thaliana lines (Fig. 5a). Compared with Col-0, shoot
413	As concentration was 9.7 and $35 - 39$ times higher in <i>hac1-2</i> and the three lines of

PvACR3 hac1-2, respectively (Fig. 5b). After P. vittata was transplanted into the same soil for 3 or 6 weeks, there was no significant increase in the frond biomass 415 (Fig. 5c). There was also no significant increase in As concentration in the fronds 3 416 weeks after transplanting compared with the initial As concentration at the time of 417 transplanting (Fig. 5d). Six weeks after transplanting, As concentration in *P. vittata* 418 fronds increased from the initial level of 14 mg kg⁻¹ to 54 mg kg⁻¹ (Fig. 5d). The net 419 increase in frond As concentration was comparable to the shoot As concentrations 420 421 of the PvACR3 hac1-2 lines grown in the same soil over 3 weeks. 422 423 Combining HAC1 and PHO1 mutation decreases As accumulation in A. thaliana 424 shoots 425 426 Because *hac1* mutants accumulated large amounts of As(V) in the roots (Fig. 3a), we hypothesized that As(V) may be loaded into the xylem in the roots via the PHO1 427 phosphate exporter for long-distance transport to the shoots. To test this hypothesis, 428 429 we crossed pho1-2 mutant (Delhaize & Randall, 1995) with hac1-1 mutant (Chao et al., 2014) to generate a double mutant. In hydroponic culture with a normal level of 430 phosphate concentration (0.1 mM), the pho1-2 mutant plants were smaller than WT, 431 with approximately 70% and 40% inhibition of the shoot and root biomass, 432 respectively (Fig. 6a). This phenotype is similar to that reported before (Delhaize & 433 Randall, 1995; Rouached et al., 2011). The hac1-1 mutant was also smaller than 434 WT (by approximately 20% in both the shoot and root biomass). The hac1-1 pho1-2 435 double mutant showed the same growth phenotype as pho1-2 (Fig. 6a). Arsenic 436 speciation in roots and shoots was determined after plants were exposed to 5 µM 437 As(V) for 1 day in the absence of phosphate. The *pho1-2* mutant showed no 438 significant differences from Col-0 in the total concentrations of As in the roots and 439 440 shoots, and there were also no significant differences in As speciation with As(III) 441 accounting for 95 – 98% of the total As (Fig. 6b, c). By contrast, the *hac1-1* mutant had 2.2 and 57 times higher As concentration in the roots and shoots, respectively, 442 compared with Col-0. The increased root As concentration in hac1-1 was mainly in 443

the form of As(V), accounting for 58% of the total As, whereas most of the 444 increased shoot As concentration was in the form of As(III). The As accumulation 445 phenotype in hac1-1 was reduced by 85% in the hac1-1 pho1-2 double mutant, 446 although total As concentrations in the roots and shoots of the double mutant were 447 still significantly higher than those of Col-0 (by 20% and 6 fold, receptively) (Fig. 448 449 6b, c). The As(III)% in the roots of the double mutant was 59%, which was lower than Col-0 and pho1-2 (95 – 96%) but higher than hac1-2 (42%). The results 450 suggest that *PHO1* mutation had no impact on As accumulation in the Col-0 451 background, but greatly suppressed As translocation from the roots to the shoots in 452 the *hac1-2* background. 453 454 Effects of GSH and PC mutants in combination with HAC1 mutation on As 455 456 tolerance and accumulation 457 It is well known that GSH and PCs are crucial for As detoxification through the 458 459 formation of As(III)-thiol complexes (Ha et al., 1999; Pickering et al., 2000; Liu et al., 2010). Moreover, the sequestration of the As(III)-thiol complexes in the root 460 vacuoles reduces the root to shoot translocation of As in A. thaliana Col-0 (Liu et 461 462 al., 2010). Here, we investigated the effects of combining mutations that reduce GSH (cad2-1) or PC (cad1-3) concentrations (Howden et al., 1995a; Howden et al., 463 1995b; Cobbett et al., 1998) with hac1-1 and hac1-2 mutants (Chao et al., 2014) on 464 As tolerance and accumulation. As the double mutants of cad2-1 hac1-1 and cad1-3 465 hac1-1 behaved similarly to cad2-1 hac1-2 and cad1-3 hac1-2, respectively, only 466 one set of data are presented. In addition to genotyping based on the mutated genes, 467 we also determined the concentrations of Cys, GSH and PCs in the roots and shoots 468 of WT, single and double mutants after exposure to 5 µM As(V) for 1 day. The 469 470 results are consistent with expectations, with cad2-1 and cad2-1 hac1-2 containing 471 lower levels of GSH and PCs than WT and cad1-3 and cad1-3 hac1-2 containing almost no PCs (Supplementary Fig. S7). 472

1/4	plants were grown on agar plates amended with $0-250 \mu \text{M}$ As(v). Consistent with
175	previous reports (Ha et al., 1999; Liu et al., 2010), cad2-1 and cad1-3 mutants were
176	hypersensitive to As(V), with EC ₅₀ being at least 10 times lower than WT based on
177	root growth and approximately 20 times lower than WT based on shoot growth
178	(Supplementary Fig. 8, Table 1). <i>hac1</i> mutants were also more sensitive than Col-0,
179	but not to the extent of cad2-1 and cad1-3 mutants. The cad2-1 hac1-2 and cad1-3
180	hac1-2 double mutants showed the same As(V) sensitivity as the cad2-1 and cad1-3
181	single mutant, respectively, with similar EC ₅₀ values between the single and double
182	mutants (Table 1).
183	After exposure to 5 μ M As(V) for 1 day, hac1-2 accumulated 2 and 12 fold
184	more As in the roots and shoots, respectively, than Col-0 (Fig. 7a, b). The cad2-1
185	and cad1-3 mutants accumulated less As in the roots (~50%) but more As in the
186	shoots (~3 fold) than Col-0. The <i>cad2-1 hac1-2</i> and <i>cad1-3 hac1-2</i> double mutants
187	behaved similarly to the <i>hac1-2</i> single mutant, with the exception that <i>cad1-3</i>
188	hac1-2 had 25% lower shoot As concentration than hac1-2. With regard to As
189	speciation, <i>HAC1</i> mutation markedly decreased the ability of roots to reduce As(V)
190	to As(III), resulting in a decrease in the proportion of As(III) in the total As from
191	85% in Col-0 to 18% in hac1-2 (Fig. 7a). cad2-1 and cad1-3 mutants also had lower
192	As(III)% (76% and 80%, respectively) in the roots than WT. Combining either
193	cad2-1 or cad1-3 with hac1-2 further decreased the As(V) reduction ability,
194	decreasing the As(III)% in the cad2-1 hac1-2 and cad1-3 hac1-2 roots to 1.7% and
195	14%, respectively. Most of the As in the shoots was in the form of As(III) (93 –
196	100%), with little difference between Col-0, single and double mutants (Fig. 7b).
197	
198	Discussion
199	
500	Combining HAC1 mutation with PvACR3 expression leads to As
501	hyperaccumulation in A. thaliana
502	

Previous studies have shown that HAC1 mutation (Chao et al., 2014) or expression

504	of PvACR3 in the Col-0 background of A. thaliana (Chen et al., 2013) markedly
505	increases As accumulation in the above-ground tissues of A. thaliana. Here, we
506	show that a combination of these two genetic events leads to As hyperaccumulation
507	in the shoots of A. thaliana (Figs. 3-5). The combined effect is more than additive
508	of the two events alone. Moreover, when hac1 PvACR3 plants were grown in an As
509	contaminated soil for 3 weeks, they accumulated As in the shoots to levels
510	comparable to the As hyperaccumulating fern P. vittata grown on the same soil for 6
511	weeks after transplanting (Fig. 5).
512	Consistent with the previous study (Chao et al., 2014), HAC1 mutation leads to
513	a greatly decreased As(III) efflux from the roots to the external medium following
514	As(V) uptake and a markedly increased As translocation from the roots to the
515	shoots (Fig. 3). This effect has also been observed in the rice mutants of OsHAC1;1
516	OsHAC1;2 and OsHAC4, which are homologous genes of HAC1 (Shi et al., 2016;
517	Xu et al., 2017). By contrast, expression of the P. vittata As(III) efflux transporter
518	gene PvACR3 in A. thaliana did not increase the efflux of As(III) to the external
519	medium (Figs. 1 and 3). This result is different from the study of Chen et al. (2013),
520	which reported increased As(III) efflux to the external medium in the PvACR3
521	expressing lines. A closer examination of the data by Chen et al. (2013) reveals that
522	the amount of $As(III)$ extruded into the medium was barely detectable in both Col-0
523	and transgenic lines, suggesting that their experimental method was not optimized
524	to allow a reliable determination of As(V) uptake and As(III) efflux. Also different
525	from the study of Chen et al. (2013) is our observation of a much larger
526	enhancement of root to shoot As translocation and shoot As accumulation in the
527	PvACR3 transgenic lines (Fig. 1). This enhancement occurred regardless of whether
528	As was supplied to plants in the form of As(V) or As(III) (Fig. 1). Although
529	PvACR3 was shown to be a vacuolar As(III) transporter in the gametophyte of <i>P</i> .
530	vittata (Indriolo et al., 2010), PvACR3 was found to be localised to the plasma
531	membrane in both the root and leaf cells of A. thaliana plants heterologously
532	expressing PvACR3:GFP (Supplementary Fig. S3) (also Chen et al., 2013). In
533	transgenic A. thaliana lines, PvACR3 likely acts as a plasma membrane localised

534	As(III) efflux transporter for the loading of As(III) into the xylem. The fact that
535	PvACR3 did not enhance As(III) efflux to the external medium could be explained
536	by a preferential accumulation of the protein in the endodermis and the stele in the
537	roots of the transgenic plants (Supplementary Fig. S4). Although the CaMV35S
538	promoter used to drive the expression of PvACR3:GFP is a constitutive promoter, it
539	is not unusual that such a promoter can lead to a preferential expression in the
540	vascular tissues (Benfey et al., 1989). Thus, decreasing As(III) efflux to the external
541	medium by disrupting HAC1 and enhancing As(III) efflux to the xylem by
542	expressing PvACR3 are sufficient to induce As hyperaccumulation in A. thaliana
543	shoots. These are the two key traits postulated to explain As hyperaccumulation in P.
544	vittata (Su et al., 2008; Zhao et al., 2009). In fact, As speciation analysis of P.
545	vittata roots exposed to As(V) showed relatively low percentages (13 – 19%) of
546	As(III) (Zhao et al., 2003), suggesting that As(V) reduction is limited in P. vittata
547	roots, which is similar to A. thaliana hac1 mutants. It would be interesting to
548	investigate whether P. vittata possesses functional HAC1-like enzymes.
549	Despite HAC1 playing an important role in As(V) reduction in A. thaliana
550	roots (Figs. 3, 6, 7), there likely exist other As(V) reductases or non-enzymatic
551	As(V) reduction mechanisms that contribute to $As(V)$ reduction in the $hac1$ mutants
552	(Chao et al., 2014). As(III) produced by these additional reduction mechanisms is
553	then loaded into the xylem via PvACR3, as well as indigenous As(III) transporters
554	such as AtNIP3;1 (Xu $\it et~al.$, 2015). The action of PvACR3 may also enhance As(V)
555	reduction in the roots by alleviating the feedback inhibition of As(III), thus
556	explaining decreased concentrations of not only As(III) but also As(V) in the roots
557	of hac1 PvACR3 plants (Fig. 3). Different from hac1 PvACR3 plants, hac1 pho1
558	double mutant had a much lower As concentration in the shoots than hac1 single
559	mutant (Fig. 6). The phenotype of hac1 pho1 double mutant with a markedly
560	decreased As accumulation in the shoots suggests that As(V) is also loaded into the
561	xylem via PHO1. This mechanism is important in the <i>hac1</i> background because of
562	the build-up of $As(V)$ in the roots, but not in the Col-0 background because most of
563	the $As(V)$ taken up was reduced to $As(III)$ (Figs. 3 and 6). Therefore, xylem loading 19

whereas As(III) is likely to be the predominant form of As transported to the shoots 565 566 in Col-0 and hac1 PvACR3 plants. In the shoots, however, most of the As was in the form of As(III) even in the *hac1* background, suggesting a strong capacity of As(V) 567 reduction that is little unaffected by *HAC1* mutation. As(V) reduction in the shoots 568 569 may be mediated by other As(V) reductases or non-enzymatic reactions (Chao et al., 570 2014). Another possible contributing factor in As hyperaccumulation in *P. vittata* is 571 that most of the As in the roots is not complexed with thiol compounds and hence is 572 573 highly mobile for root to shoot translocation (Zhao et al., 2009). The shoot to root As concentration ratio was significantly higher in the *cad1-3* and *cad2-1* mutants 574 than in Col-0 (Fig. 7), consistent with a higher As mobility in these mutants. 575 576 However, this effect is far smaller than that caused by either HAC1 mutation or PvACR3 expression (Figs. 3 and 7). Combining thiol mutants with HAC1 mutation 577 also did not increase the root to shoot As translocation beyond the level observed in 578 579 the *hac1* mutant (Fig. 7). These results suggest that the effect on root to shoot As translocation ranks in the following order: As(III) xylem loading mediated by 580 PvACR3 > loss of function of *HAC1* > limited As(III)-thiol complexation in roots. 581 582 Comparisons of the contribution of GSH, PCs, HAC1 and PvACR3 to As tolerance 583 584 The hypersensitivity of cad1-3 and cad2-1 to As(V) or As(III) demonstrates the 585 critical roles of PCs and GSH in As tolerance in A. thaliana (Ha et al., 1999; Li et 586 al., 2006; Liu et al., 2010) (also Fig. S8, Table 1). HAC1 is also important for the 587 tolerance to As(V), but not to As(III) (Chao et al., 2014; Sanchez-Bermejo et al., 588 2014). However, the *hac1* mutant showed As(V) sensitivity at a much higher As(V) 589 590 concentration than either cad1-3 or cad2-1, even though cad1-3 and cad2-1 591 accumulated much lower levels of As in both roots and shoots than hac1 (Fig. S8, Table 1). Moreover, hac1 cad1-3 and hac1 cad2-1 were no more sensitive to As(V) 592 than *cad1-3* and *cad2-1* single mutant, respectively. These results support the notion 593

of As(V) mediated by PHO1 is important for shoot As accumulation in *hac1* plants,

that internal detoxification of As via complexation with thiol compounds represents a fundamental mechanism of As tolerance in As nonhyperaccumulating plants that is required even at relatively low levels of As exposure, whereas HAC1 mediated As(V) reduction and subsequent As(III) efflux confers As(V) tolerance only at high levels of As(V) exposure. Interestingly, hac1 cad2-1 roots contained As almost exclusively in the form of As(V) after exposure to 5 μ M As(V) for 1 day (Fig. 7), demonstrating that the double mutant has lost most of the As(V) reduction capacity. This result suggests that GSH is required as a reductant for either enzymatic or non-enzymatic As(V) reduction. Unlike As non-hyperaccumulators, only a very small proportions of As in P. vittata is complexed with thiol compounds (Webb et al., 2003; Zhao et al., 2003; Zhang et al., 2004; Pickering et al., 2006), suggesting a limited role of PCs in As tolerance in the hyperaccumulator. Vacuolar sequestration of As(III) appears to be the key mechanism of As tolerance in *P. vittata*, with PvACR3 playing an important role in this process (Indriolo et al., 2010). Expression of PvACR3 in A. thaliana significantly increased its tolerance to both As(V) and As(III) (Fig. S2). This result is in agreement with the study by Chen et al. (2013). However, their suggestion that PvACR3 enhances As tolerance by extruding As(III) from root cells to the external medium is not supported by our data (Fig. 1). Instead, PvACR3 likely mediates xylem loading of As(III), thus reducing the build-up of As(III) in the root cells. It has been shown that in cowpea (Vigna unguiculata) root growth is particularly sensitive to As(V) exposure with As preferentially accumulating in the root apex, causing damage to the meristem (Kopittke et al., 2012). By exporting As(III) from the roots to the less sensitive shoot tissues, PvACR3 may enhance the overall As tolerance of the plant. This hypothesis is supported by the grafting experiment, which shows that PvACR3 expressed in the root alone is sufficient to explain the enhanced As tolerance in PvACR3 expressing A. thaliana plants (Fig. 2). PvACR3 expression in the *hac1* background also partially rescued the As(V) sensitive phenotype caused by *HAC1* mutation (Fig. S5), which may be attributed to decreased As(III) concentration in the roots (Fig. 3). Despite increased As tolerance

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

624	in PvACR3 expressing A. thaliana, the level of tolerance is still below that in P.
625	vittata, suggesting the existence of other tolerance mechanisms. Of the genes tested
626	in the present study, their relative importance to As tolerance ranks in the following
627	order: thiol production by PCS1 and γ -ECS > xylem loading of As(III) by
628	PvACR3 > As(V) reduction by HAC1.
629	
630	Taken together, our study has demonstrated that As hyperaccumulation can be
631	engineered in A. thaliana by knocking out HAC1 gene and expressing PvACR3. The
632	same approach may be applied to high biomass plant species for the purpose of
633	phytoremediation of As-contaminated soil. Expression of PvACR3 also enhances As
634	tolerance, though not to the level found in <i>P. vittata</i> .
635	
636	Acknowledgements
637	We thank Professor Lena Ma for providing Pteris vittata plants. This work was
638	supported by National Natural Science Foundation of China (31520103914 to F-J.Z.
639	and D.E.S.), US Natural Science Foundation (NSF1258097 (to J.A.B. and D.E.S.)
640	and US National Institutes of Health (grant 2R01GM078536 and
641	2P4ES007373-19A1 to D.E.S.).
642	
643	Author contributions
644	F-J.Z., J.A.B. and D.E.S. designed the research. C.W., G.N.N., E.S.B. and Y.C.
645	performed the experiments and analysed the data. F-J.Z., C.W., J.A.B. and D.E.S.
646	wrote the paper with contributions from all the authors.
647	
648	References
649	Ali W, Isner JC, Isayenkov SV, Liu WJ, Zhao FJ, Maathuis FJM. 2012.
650	Heterologous expression of the yeast arsenite efflux system ACR3 improves
651	Arabidopsis thaliana tolerance to arsenic stress. New Phytologist 194:
652	716-723.
653	Benfey PN, Ren L, Chua NH. 1989. The CaMV S-35 enhancer contains at least 2

654	domains which can confer different developmental and tissue-specific
655	expression patterns. Embo Journal 8: 2195-2202.
656	Chao DY, Chen Y, Chen JG, Shi SL, Chen ZR, Wang CC, Danku JM, Zhao FJ,
657	Salt DE. 2014. Genome-wide association mapping identifies a new arsenate
658	reductase enzyme critical for limiting arsenic accumulation in plants. PloS
659	Biology 12 e1002009.
660	Chen YS, Xu WZ, Shen HL, Yan HL, Xu WX, He ZY, Ma M. 2013. Engineering
661	arsenic tolerance and hyperaccumulation in plants for phytoremediation by a
662	PvACR3 transgenic approach. Environmental Science & Technology 47:
663	9355-9362.
664	Clough SJ, Bent AF. 1998. Floral dip: a simplified method for
665	Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant
666	Journal 16 : 735-743.
667	Cobbett CS, May MJ, Howden R, Rolls B. 1998. The glutathione-deficient,
668	cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in
669	gamma-glutamylcysteine synthetase. Plant Journal 16: 73-78.
670	Delhaize E, Randall PJ. 1995. Characterization of a phosphate accumulator mutant
671	of Arabidopsis thaliana. Plant Physiology 107: 207-213.
672	Duan GL, Kamiya T, Ishikawa S, Arao T, Fujiwara T. 2012. Expressing ScACR3
673	in rice enhanced arsenite efflux and reduced arsenic accumulation in rice
674	grains. Plant and Cell Physiology 53: 154-163.
675	González E, Solano R, Rubio V, Leyva A, Paz-Ares J. 2005. PHOSPHATE
676	TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific
677	SEC12-related protein that enables the endoplasmic reticulum exit of a
678	high-affinity phosphate transporter in Arabidopsis. Plant Cell 17: 3500-3512.
679	Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ,
680	Goldsbrough PB, Cobbett CS. 1999. Phytochelatin synthase genes from
681	Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:
682	1153-1163.
683	Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. 1995a. A

thaliana.
1995b.
ochelatin
ansporter
ern <i>Pteris</i>
ceroporin
28.
NIP1;1,
abidopsis
nna BA,
bution of
nensional
t-specific
g-distance
d arsenic.
volved in
os Letters
J. 2010.
fflux and
ogy 152:
FJ. 2008.

Transporters of arsenite in rice and their role in arsenic accumulation in rice

714	grain. Proceedings of the National Academy of Sciences of the United States of
715	America 105 : 9931–9935.
716	Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED. 2001. A fern that
717	hyperaccumulates arsenic. Nature 409: 579-579.
718	Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A,
719	Cambell RCJ, Sun G, Zhu YG, Feldmann J, et al. 2009. Geographical
720	variation in total and inorganic arsenic content of polished (white) rice.
721	Environmental Science & Technology 43: 1612-1617.
722	Minocha R, Thangavel P, Dhankher OP, Long S. 2008. Separation and
723	quantification of monothiols and phytochelatins from a wide variety of cell
724	cultures and tissues of trees and other plants using high performance liquid
725	chromatography. Journal of Chromatography A 1207: 72-83.
726	Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE,
727	George GN. 2006. Localizing the biochemical transformations of arsenate in a
728	hyperaccumulating fern. Environmental Science & Technology 40: 5010-5014.
729	Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE. 2000.
730	Reduction and coordination of arsenic in Indian mustard. Plant Physiology
731	122 : 1171-1177.
732	Quaghebeur M, Rengel Z. 2004. Arsenic uptake, translocation and speciation in
733	pho1 and pho2 mutants of Arabidopsis thaliana. Physiologia Plantarum 120:
734	280-286.
735	Raab A, Williams PN, Meharg A, Feldmann J. 2007. Uptake and translocation of
736	inorganic and methylated arsenic species by plants. Environmental Chemistry
737	4 : 197-203.
738	Rouached H, Stefanovic A, Secco D, Arpat AB, Gout E, Bligny R, Poirier Y. 2011.
739	Uncoupling phosphate deficiency from its major effects on growth and
740	transcriptome via PHO1 expression in Arabidopsis. Plant Journal 65:
741	557-570.
742	Sanchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernandez S,
743	Jorge Martinez-Herrera D, Leo-del Puerto Y, Munoz R, Camara C,

744	Paz-Ares J, et al. 2014. Natural variation in arsenate tolerance identifies an
745	arsenate reductase in Arabidopsis thaliana. Nature Communications 5: 4617.
746	Shi S, Wang T, Chen Z, Tang Z, Wu ZC, Salt DE, Chao DY, Zhao FJ. 2016.
747	OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate
748	arsenic accumulation. Plant Physiology 172: 1708-1719.
749	Shin H, Shin HS, Dewbre GR, Harrison MJ. 2004. Phosphate transport in
750	Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition
751	from both low- and high-phosphate environments. <i>Plant Journal</i> 39 : 629-642.
752	Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G
753	Martinoia E, Lee Y, Ma JF. 2014. A rice ABC transporter, OsABCC1,
754	reduces arsenic accumulation in the grain. Proceedings of the National
755	Academy of Sciences of the United States of America 111: 15699-15704.
756	Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D,
757	Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, et al. 2010.
758	Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin
759	transporters. Proceedings of the National Academy of Sciences of the United
760	States of America 107 : 21187-21192.
761	Su YH, McGrath SP, Zhu YG, Zhao FJ. 2008. Highly efficient xylem transport of
762	arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytologist 180:
763	434-441
764	Wang PT, Zhang WW, Mao CZ, Xu GH, Zhao FJ. 2016. The role of OsPT8 in
765	arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of
766	Experimental Botany 67: 6051-6059.
767	Webb SM, Gaillard JF, Ma LQ, Tu C. 2003. XAS speciation of arsenic in a
768	hyper-accumulating fern. Environmental Science & Technology 37: 754-760.
769	Xu JM, Shi SL, Wang L, Tang Z, lv TT, Zhu XL, Ding XM, Wang YF, Zhao FJ,
770	Wu ZC. 2017. OsHAC4 is critical for arsenate tolerance and regulates arsenic

Xu WZ, Dai WT, Yan HL, Li S, Shen HL, Chen YS, Xu H, Sun YY, He ZY, Ma M.
 2015. Arabidopsis NIP3;1 plays an important role in arsenic uptake and

accumulation in rice. New Phytologist: 10.1111/nph.14572.

774	root-to-shoot translocation under arsenite stress conditions. <i>Molecular Plant</i> 8:
775	722-733.
776	Xu XY, McGrath SP, Zhao FJ. 2007. Rapid reduction of arsenate in the medium
777	mediated by plant roots. New Phytologist 176: 590-599.
778	Zhang WH, Cai Y, Downum KR, Ma LQ. 2004. Thiol synthesis and arsenic
779	hyperaccumulation in Pteris vittata (Chinese brake fern). Environmental
780	Pollution 131: 337-345.
781	Zhao FJ, Dunham SJ, McGrath SP. 2002. Arsenic hyperaccumulation by different
782	fern species. New Phytologist 156: 27-31.
783	Zhao FJ, Ma JF, Meharg AA, McGrath SP. 2009. Arsenic uptake and metabolism
784	in plants. New Phytologist 181: 777-794.
785	Zhao FJ, McGrath SP, Meharg AA. 2010. Arsenic as a food-chain contaminant:
786	mechanisms of plant uptake and metabolism and mitigation strategies. Annual
787	Review of Plant Biology 61: 535–559.
788	Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP. 2003. The
789	role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris
790	vittata. New Phytologist 159: 403-410.
791	

Table 1. The effect concentration of As(III) or As(V) causing 50% inhibition of root or shoot growth $(EC_{50} \pm SE)$ of Col-0, mutants and *PvACR3* expression lines of *Arabidopsis thaliana*

Lines	As(V) E	CC ₅₀ (μM)	As(III) EC ₅₀ (μM)
Lines -	Root length	Shoot biomass	Root length Shoot biomass
Col-0	76.5 ± 15.4	88.9 ± 155.9	12.9 ± 3.4 17.2 ± 8.9
PvACR3-E4	307.4 ± 56.3	230.0 ± 58.3	$29.6 \pm 5.0 \qquad \qquad 36.9 \pm 7.5$
PvACR3-E8	444.0 ± 36.1	185.6 ± 81.5	38.9 ± 4.1 42.0 ± 17.6
Col-0	243.6 ± 14.3	106.9 ± 10.3	
hac1-2	90.9 ± 17.7	93.8 ± 21.7	
PvACR3-E8 hac1-2	222.4 ± 55.4	253.4 ± 80.4	
G 1 0	250 h	162.2 . 24.2	
Col-0	> 250 b	163.3 ± 34.3	
cad2-1	21.8 ± 1.0	8.2 ± 1.4	
hac1-2	92.8 ± 11.5	94.8 ± 11.1	
cad2-1 hac1-2	19.2 ± 1.3	7.8 ± 1.6	
Col-0	> 250 ^b	208.7 ± 33.5	
cad1-3	23.2 ± 1.4	8.4 ± 1.4	
hac1-2	147.9 ± 31.9	136.8 ± 18.4	
cad1-3 hac1-2	24.3 ± 10.3	11.4 ± 1.4	

^{794 &}lt;sup>a</sup> Experiment 1 and Experiments 2-4 used different agars, which contained different phosphate concentrations and therefore resulted in different EC₅₀ values for Col-0.

^b Where the highest As dose did not result in a significant inhibition, EC₅₀ could not be estimated and was considered to be higher than the largest As concentration in the experiment.

List of Figures:

800	
801	Fig. 1 Arsenic accumulation in transgenic A. thaliana expressing PvACR3. (a, b) Total
802	As concentration in roots (a) and shoots (b) of Col-0 and PvACR3 expressing lines
803	after plants were exposed to 5 μM As(III) for 2 days. (c, d) The concentrations of
804	As(III) and As(V) in roots (c) and shoots (d) of Col-0 and PvACR3 expressing lines
805	after plants were exposed to 5 μM As(V) for 2 days in the absence of phosphate. (e)
806	As(V) uptake and As(III) efflux to the external solution after plants were exposed to 5
807	μM As(V) for 1 day in the absence of phosphate. Data are means \pm SE (n = 4). The %
808	values in (e) represents As(III) efflux as a % of As(V) uptake. Different letters above
809	bars indicate significant differences at P <0.05.
810	
811	Fig. 2 Arsenic tolerance of reciprocally grafted A. thaliana plants expressing PvACR3
812	Reciprocally grafted seedlings were grown on plates in the absence of arsenic (a) or in
813	the presence of 25 μM arsenite (b); self grafted Col-0 (Col-0/Col-0); self grafted
814	PvACR3 expressing line (ACR3/ACR3); PvACR3 expressing line shoot scion with
815	Col-0 rootstock (ACR3/Col-0); Col-0 shoot scion with PvACR3 expressing line
816	rootstock (Col-0/ACR3). Root growth (c) and shoot fresh weight (d) in the presence
817	of 25 μM arsenite relative to control treatment. Data point are mean \pm SE (n = 4).
818	Same letter within graphs represents lines that are not significantly different (P >0.05).
819	PvACR3-E8 lines was used as a PvACR3 expressing transgenic line.
820	
821	
822	Fig. 3 Effect of combining PvACR3 expression with HAC1 mutation on As
823	accumulation and speciation in A. thaliana. (a, b) Arsenic speciation in the roots (a)
824	and shoots (b) of different A. thaliana lines grown in hydroponic culture and exposed
825	to 5 μ M As(V) for 1 day without phosphate. (c) As(V) uptake and As(III) efflux into
826	the nutrient solution after 1-day exposure to 5 μM As(V) without phosphate. Data are
827	means \pm SE (n = 4). The % values in (c) represents As(III) efflux as a % of As(V)

uptake. Different letters above bars indicate significant differences at P < 0.05. 828 829 Fig. 4 Arsenic accumulation in transgenic A. thaliana hac1 mutant expressing 830 PvACR3 grown in a potting medium. (a) Shoot dry weights of different lines as 831 affected by the addition of 10 mg kg⁻¹ As(V). (b) Total As concentration in the shoots 832 of different lines grown in a potting medium amended with 10 mg kg⁻¹ As(V). Data 833 are means \pm SE (n=4). The values inside open bars represent the percentage values 834 relative to the control. Different letters above bars represent significant difference at P 835 < 0.05. 836 837 Fig. 5 Arsenic accumulation in transgenic A. thaliana hac1-2 mutant expressing 838 PvACR3 and P. vittata grown in an As-contaminated soil. (a) Shoot dry weights of 839 840 different A. thaliana lines. (b) Total As concentrations in the shoots of different lines of A. thaliana 3 weeks after transplanting. (c) Frond dry weights of P. vittata. (d) Total 841 As concentrations in the fronds of *P. vittata* at the time of transplanting and 3 or 6 842 843 weeks after transplanting. Data are means \pm SE (n = 4). Different letters above bars represent significant difference at P < 0.05. 844 845 Fig. 6 Effect of combining *PHO1* and *HAC1* mutation on As accumulation in A. 846 thaliana. (a) Shoot and root fresh weights of Col-0, hac1-1, pho1-2 and hac1-1 847 pho1-2 plants of A. thaliana. (b, c) Arsenic speciation in the roots (b) and shoots (c) of 848 different A. thaliana lines grown in hydroponic culture and exposed to 5 µM As(V) 849 for 1 day without phosphate. Data are means \pm SE (n = 4). Different letters above bars 850 851 indicate significant differences at P < 0.05. 852 Fig. 7 Arsenic speciation in the roots (a) and shoots (b) of Col-0, hac1, cad2-1, 853 cad1-3 and the double mutants of hac1 cad2-1 and hac1 cad1-3 after exposure to 5 854 855 μ M As(V) (without phosphate) for 1 day. Data are means \pm SE (n=4). Different letters above bars represent significant difference at P < 0.05. 856

857 **Supporting Information** 858 Fig. S1 Genotyping of various mutants and expressing lines used in the present study. 859 Fig. S2 Arsenate and arsenite tolerance of transgenic A. thaliana expressing PvACR3. 860 Fig. S3 Subcellular localisation of PvACR3 in A. thaliana. 861 Fig. S4 Preferential expression of PvACR3 in the endodermis and stele of A. thaliana 862 863 roots. Fig. S5 Effect of combining PvACR3 expression with HAC1 mutation on arsenate 864 tolerance in A. thaliana. 865 Fig. S6 Expression levels of PvACR3 and HAC1 genes in A. thaliana hac1 mutant 866 expressing PvACR3 and the growth phenotypes of different lines grown in a potting 867 medium with or without 10 mg kg⁻¹ As(V). 868 Fig. S7 The concentrations of non-protein thiols in the roots and shoots of Col-0, 869 cad2-1, cad1-3, hac1-2, cad2-1hac1-2 and cad1-3 hac1-2 of A. thaliana. 870 Fig. S8 Arsenate tolerance in hac1, cad2-1, cad1;3 and double mutants of cad2-1 871

Table S1 Primers used for genotyping of different lines of *A. thaliana*.

872

873

874

hac1 and cad1;3 hac1.