Dr IAN MASKERY IAN.MASKERY@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting
Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A.; Wildman, R.D.; Hague, R.J.M.
Authors
N.T. Aboulkhair
A.O. Aremu
Professor CHRISTOPHER TUCK CHRISTOPHER.TUCK@NOTTINGHAM.AC.UK
PRO-VICE CHANCELLOR FACULTY OF ENGINEERING
Professor Ian Ashcroft IAN.ASHCROFT@NOTTINGHAM.AC.UK
PROFESSOR OF MECHANICS OF SOLIDS
R.D. Wildman
R.J.M. Hague
Abstract
Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisable by conventional manufacturing processes. This enables the production of advanced, functionally graded, components. However, for these designs to be successful, the relationships between lattice geometry and performance must be established. We do so here by examining the mechanical behaviour of uniform and graded density SLM Al-Si10-Mg lattices under quasistatic loading. As-built lattices underwent brittle collapse and non-ideal deformation behaviour. The application of a microstructure-altering thermal treatment drastically improved their behaviour and their capability for energy absorption. Heat-treated graded lattices exhibited progressive layer collapse and incremental strengthening. Graded and uniform structures absorbed almost the same amount of energy prior to densification, 6.3±0.26.3±0.2 MJ/m3 and 5.7±0.25.7±0.2 MJ/m3, respectively, but densification occurred at around 7% lower strain for the graded structures. Several characteristic properties of SLM aluminium lattices, including their effective elastic modulus and Gibson-Ashby coefficients, C1 and α, were determined; these can form the basis of new design methodologies for superior components in the future.
Citation
Maskery, I., Aboulkhair, N., Aremu, A., Tuck, C., Ashcroft, I., Wildman, R., & Hague, R. (2016). A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering: A, 670, 264-274. https://doi.org/10.1016/j.msea.2016.06.013
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 7, 2016 |
Online Publication Date | Jun 11, 2016 |
Publication Date | Jul 18, 2016 |
Deposit Date | Jun 21, 2016 |
Publicly Available Date | Jun 21, 2016 |
Journal | Materials Science and Engineering A |
Print ISSN | 0921-5093 |
Electronic ISSN | 0921-5093 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 670 |
Pages | 264-274 |
DOI | https://doi.org/10.1016/j.msea.2016.06.013 |
Keywords | Selective laser melting; Additive manufacture; Lattice; Mechanical testing; Functional grading |
Public URL | https://nottingham-repository.worktribe.com/output/800577 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S092150931630658X |
Contract Date | Jun 21, 2016 |
Files
Manuscript_IM.pdf
(31.5 Mb)
PDF
You might also like
Drop-on-demand 3D printing of programable magnetic composites for soft robotics
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search