Skip to main content

Research Repository

Advanced Search

Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae

Xu, Zhengyao; Brown, William

Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae Thumbnail


Authors

Zhengyao Xu



Abstract

Background: Phage-encoded serine integrases, such as ?C31 integrase, are widely used for genome engineering but have not been optimized for use in Saccharomyces cerevisiae although this organism is a widely used organism in biotechnology.

Results: The activities of derivatives of fourteen serine integrases that either possess or lack a nuclear localization signal were compared using a standardized recombinase mediated cassette exchange reaction. The relative activities of these integrases in S. cerevisiae and in mammalian cells suggested that the major determinant of the activity of an integrase is the enzyme itself and not the cell in which it is working. We used an inducible promoter to show that six integrases were toxic as judged by their effects upon the proliferative ability of transformed yeast. We show that in general the active phage-encoded serine integrases were an order of magnitude more efficient in promoting genome integration reactions than a simple homologous recombination.

Conclusions: The results of our study allow us to identify the integrases of the phage ?BT1, TP901 ~ nls, R4, Bxb1, MR11, A118, ?K38, ?C31 ~ nls, W? and SPBC ~ nls as active in S. cerevisiae and indicate that vertebrate cells are more restricted than yeast in terms of which integrases are active.

Citation

Xu, Z., & Brown, W. (2016). Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnology, 16, Article 13. https://doi.org/10.1186/s12896-016-0241-5

Journal Article Type Article
Acceptance Date Jan 19, 2016
Online Publication Date Feb 9, 2016
Publication Date Feb 9, 2016
Deposit Date Jul 21, 2016
Publicly Available Date Jul 21, 2016
Journal BMC Biotechnology
Electronic ISSN 1472-6750
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 16
Article Number 13
DOI https://doi.org/10.1186/s12896-016-0241-5
Keywords Phage encoded serine integrases, Cassette exchange, Saccharomyces cerevisiae, Genome modification
Public URL https://nottingham-repository.worktribe.com/output/776758
Publisher URL http://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-016-0241-5

Files





You might also like



Downloadable Citations