WILLIAM BROWN william.brown@nottingham.ac.uk
Reader
Kinetochore assembly and heterochromatin formation occur autonomously in Schizosaccharomyces pombe
Brown, William R.A.; Thomas, Geraint; Lee, Nicholas C.O.; Blythe, Martin; Liti, Gianni; Warringer, Jonas; Loose, Matthew W.
Authors
Geraint Thomas
Nicholas C.O. Lee
Martin Blythe
Gianni Liti
Jonas Warringer
Matthew W. Loose
Abstract
Kinetochores in multicellular eukaryotes are usually associated with heterochromatin. Whether this heterochromatin simply promotes the cohesion necessary for accurate chromosome segregation at cell division or whether it also has a role in kinetochore assembly is unclear. Schizosaccharomyces pombe is an important experimental system for investigating centromere function, but all of the previous work with this species has exploited a single strain or its derivatives. The laboratory strain and most other S. pombe strains contain three chromosomes, but one recently discovered strain, CBS 2777, contains four. We show that the genome of CBS 2777 is related to that of the laboratory strain by a complex chromosome rearrangement. As a result, two of the kinetochores in CBS 2777 contain the central core sequences present in the laboratory strain centromeres, but lack adjacent heterochromatin. The closest block of heterochromatin to these rearranged kinetochores is ∼100 kb away at new telomeres. Despite lacking large amounts of adjacent heterochromatin, the rearranged kinetochores bind CENP-ACnp1 and CENP-CCnp3 in similar quantities and with similar specificities as those of the laboratory strain. The simplest interpretation of this result is that constitutive kinetochore assembly and heterochromatin formation occur autonomously.
Citation
Brown, W. R., Thomas, G., Lee, N. C., Blythe, M., Liti, G., Warringer, J., & Loose, M. W. (2014). Kinetochore assembly and heterochromatin formation occur autonomously in Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences, 111(5), https://doi.org/10.1073/pnas.1216934111
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 23, 2013 |
Online Publication Date | Jan 21, 2014 |
Publication Date | Feb 4, 2014 |
Deposit Date | Jul 25, 2016 |
Publicly Available Date | Jul 25, 2016 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Print ISSN | 0027-8424 |
Electronic ISSN | 1091-6490 |
Publisher | National Academy of Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 111 |
Issue | 5 |
DOI | https://doi.org/10.1073/pnas.1216934111 |
Public URL | https://nottingham-repository.worktribe.com/output/723552 |
Publisher URL | http://www.pnas.org/content/111/5/1903.full |
Contract Date | Jul 25, 2016 |
Files
pnas201216934_vwkk6l (1).pdf
(4.5 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
Multicellular mathematical modelling of mesendoderm formation in amphibians
(2016)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search