Omar Iracheta
Characterisation of material property variation across an inertia friction welded CrMoV steel component using the inverse analysis of nanoindentation data
Iracheta, Omar; Bennett, Chris; Sun, Wei
Abstract
In this study, a new application of the inverse analysis of the depth-sensing indentation technique based on the optimization theory has been satisfactorily demonstrated. The novel approach for determining the mechanical properties from experimental nanoindentation curves has been applied in order to generate the elastic–plastic stress–strain curves of three phases located across the joint of a like-to-like inertia friction weld of a CrMoV steel, i.e. the parent phase of tempered martensite and two child phases formed during the IFW process, martensite in the quenched and over-tempered condition. The inverse analysis carried out in this study consists of an optimization algorithm implemented in MATLAB, which compares an experimental nanoindentation curve with a predicted indentation curve generated by a 3D finite element model developed using the ABAQUS software; the optimization algorithm modifies the predicted curve by changing the material properties until the best fit to the experimental nanoindentation curve is found. The optimized parameters (mechanical properties) have been used to generate the stress–strain relationships in the elastic–plastic regime that can be used to simulate numerically the effects of the variation in material properties arising from phase transformations occurring across the joint during the IFW process of a CrMoV steel.
The proposed inverse analysis was capable of fitting experimental load–depth (P–h) curves produced with a Nanoindentation Nanotest NTX unit from three characteristic regions located across the joint where the above mentioned phases are known to exist. The capability of the inverse analysis to build the stress–strain relationship in the elastic–plastic regime using the optimized mechanical properties of the parent metal has been validated using experimental data extracted from the compressive test of an axisymmetric sample of tempered martensite [1]. According to previous experimental studies, the presence of martensite in the quenched and over-tempered condition formed during the IFW of shaft sections of CrMoV steel are responsible of the 1.52:1 harder and 0.75:1 softer regions, compared to the region where the tempered martensite is located [2], [3] and [4]. These ratios are in very good agreement with the optimized magnitudes of yield stress provided by the inverse analysis, that is, 1.54:1 for the quenched martensite and 0.68:1 for the over-tempered martensite, compared to the optimized value of yield stress of the tempered martensite. Moreover, a relative difference of less than 1.5% between the experimental and predicted maximum depth (hmax) supports the capability of the method for extracting the elastic–plastic mechanical properties defining each of the indented regions.
Citation
Iracheta, O., Bennett, C., & Sun, W. (in press). Characterisation of material property variation across an inertia friction welded CrMoV steel component using the inverse analysis of nanoindentation data. International Journal of Mechanical Sciences, 107, https://doi.org/10.1016/j.ijmecsci.2016.01.023
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 20, 2016 |
Online Publication Date | Jan 26, 2016 |
Deposit Date | Jul 29, 2016 |
Publicly Available Date | Jul 29, 2016 |
Journal | International Journal of Mechanical Sciences |
Print ISSN | 0020-7403 |
Electronic ISSN | 0020-7403 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 107 |
DOI | https://doi.org/10.1016/j.ijmecsci.2016.01.023 |
Keywords | Inertia Friction Welding, Phase transformations, nanoindentation, FE modelling of depth-sensing indentation, inverse analysis |
Public URL | https://nottingham-repository.worktribe.com/output/771640 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0020740316000291 |
Contract Date | Jul 29, 2016 |
Files
Mat_props_var_IFW.pdf
(1.9 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
Place through Time: Investigating Place Identity Language within the Temporal Dimension
(2023)
Journal Article
Microstructural Study of Cold-Sprayed CoCrFeNiMn High Entropy Alloy
(2023)
Journal Article
An inverse analysis method for determining abradable constitutive properties
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search