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Abstract 

 

In this study, a new application of the inverse analysis of the depth-sensing indentation 

technique based on the optimization theory has been satisfactorily demonstrated. The novel 

approach for determining the mechanical properties from experimental nanoindentation 

curves has been applied in order to generate the elastic-plastic stress-strain curves of three 

phases located across the joint of a like-to-like inertia friction weld of a CrMoV steel, i.e. the 

parent phase of tempered martensite and two child phases formed during the IFW process, 

martensite in the quenched and over-tempered condition. The inverse analysis carried out in 

this study consists of an optimization algorithm implemented in MATLAB, which compares 

an experimental nanoindentation curve with a predicted indentation curve generated by a 3D 
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finite element model developed using the ABAQUS software; the optimization algorithm 

modifies the predicted curve by changing the material properties until the best fit to the 

experimental nanoindentation curve is found. The optimized parameters (mechanical 

properties) have been used to generate the stress-strain relationships in the elastic-plastic 

regime that can be used to simulate numerically the effects of the variation in material 

properties arising from phase transformations occurring across the joint during the IFW 

process of a CrMoV steel. 

 

The proposed inverse analysis was capable of fitting experimental load-depth (P-h) curves 

produced with a Nanoindentation Nanotest NTX unit from three characteristic regions 

located across the joint where the above mentioned phases are known to exist. The capability 

of the inverse analysis to build the stress-strain relationship in the elastic-plastic regime using 

the optimized mechanical properties of the parent metal has been validated using 

experimental data extracted from the compressive test of an axisymmetric sample of 

tempered martensite [1]. According to previous experimental studies, the presence of 

martensite in the quenched and over-tempered condition formed during the IFW of shaft 

sections of CrMoV steel are responsible of the 1.52:1 harder and 0.75:1 softer regions, 

compared to the region where the tempered martensite is located [2-4].  These ratios are in 

very good agreement with the optimized magnitudes of yield stress provided by the inverse 

analysis, that is, 1.54:1 for the quenched martensite and 0.68:1 for the over-tempered 

martensite, compared to the optimized value of yield stress of the tempered martensite. 

Moreover, a relative difference of less than 1.5% between the experimental and predicted 

maximum depth (hmax) supports the capability of the method for extracting the elastic-plastic 

mechanical properties defining each of the indented regions.  
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1 Introduction 

 

Inertia Friction Welding (IFW) is a solid-state joining technique employed in the 

manufacturing of multi-material components. The energy for welding is stored in a flywheel 

as kinetic energy and is dissipated as heat when one stationary workpiece and one rotary 

workpiece are brought into contact. Therefore coalescence is obtained through the combined 

effects of pressure and relative motion of the mating workpieces to cause heating through 

friction and consequently plastic deformation with the purpose of forming enough primary 

atomic-level bonds. [5]. 

As can be inferred from Figure 1, the thermo-mechanical history induced during the IFW 

process of SCMV steel results in a distribution in the material properties across the joint 

leading to an ~1.52:1 harder region and an ~0.75:1 softer region in relation to the base metal 

of tempered martensite, identified as TM (500HV0.1). The hard (750HV0.1) and soft 

(375HV0.1) zones are attributed to the formation of quenched martensite (QM) and over-

tempered martensite (OTM) [2, 3]. 

 

 

Figure 1. Microhardness profile across the HAZ of 

an SCMV steel weld trial [4]. 
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Polymorphic transformations during IFW of SCMV result not only in variations in physical 

properties but are also accompanied by volumetric changes arising from atomic 

rearrangements in the crystal structure. At the onset of cooling, austenite formed during the 

welding stage transforms back to quenched martensite and therefore the microstructure 

experiences a positive (increase) volumetric change [6], which consequently results in a 

significant stress reduction in the vicinity of the weld line of the as-welded component 

[7].Further investigations on the evolution of residual stresses during the IFW of SCMV steel 

based on the finite element method [8] concluded that at the onset of transformation from 

austenite to martensite, the volumetric changes experienced in the lattice relax up to 70% of 

the tensile hoop stress found in the vicinity of the weld line near the inner surface and that the 

interaction of soft regions of austenite and hard regions of heat unaffected martensite 

accounts for up to 17% of the peak tensile stress. Additionally, it was found that  the 

evolution of residual stresses is dominated by thermal strains during the initial cooling period 

and by phase transformation strains during the final cooling period. Given that the majority of 

the residual stresses are generated during the initial cooling period, the build-up of residual 

stresses was shown to be highly sensitive to the definition of elastic properties and  therefore 

the need for a more accurate representation of elastic-plastic properties was suggested. The 

proposed technique in the present study is based on an inverse analysis of the depth-sensing 

indentation test. This test involves pressing a hard indenter into a softer body, the specimen, 

by applying either a controlled load or displacement. The instrument records the depth of 

penetration beneath the surface of the specimen as a function of load in a load control test, or 

contrariwise in a displacement control test,  such that a load-depth (P-h) curve is generated 

[9] as schematically illustrated in Figure 2. 
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Figure 2. Typical P-h curve recorded during the depth-sensing 

indentation test [9]. 

 

The loading portion of the curve is typically described by Kick’s Law, i.e. 

 

 𝑃" = 𝐶ℎ& 1 

 

where PL is the loading force, h is the indentation depth and C is the loading curvature which 

is related to the geometry of the indenter tip and the material properties of the specimen. 

Upon unloading, only elastic displacements are recovered (he in Figure 2) and therefore after 

the load is completely removed, the indenter has left an impression in the specimen of depth 

hf, or final depth [10]. 

Based on Sneddon’s work [11], Ternovskii et al. [12] derived Equation 2 to relate the contact 

stiffness to the elastic modulus,  

 

 𝑆 =
𝑑𝑃
𝑑ℎ =

2
𝜋 𝐸, 𝐴 2 
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where S is the contact stiffness,  A is the projected area of the elastic contact and Er is the 

reduced modulus obtained by Equation 3 [13, 14]. 

 

 
1
𝐸,
=

1 − 𝑣&

𝐸 +
1 − 𝑣2&

𝐸2
 3 

 

Here, E and v are the Young’s modulus and Poisson’s ratio for the specimen and Ei and vi are 

the respective parameters for the indenter. Oliver and Pharr [10]  represented the unloading 

curve (PU) by a power law relation of the form: 

 

 𝑃3 = 𝐷 ℎ − ℎ5
6

 4 

 

where D and m are constants determined by a least square fitting procedure. The analytical 

differentiation of Equation 4, evaluated at maximum depth (hmax) results in an expression for 

the contact stiffness (S) 

 

 𝑆 =
𝑑𝑃3
𝑑ℎ 7879:;

= 𝑚𝐷 ℎ6=> − ℎ5
6?@
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which can be used to find the elastic modulus through Equation 2. Recent trends towards a 

more accurate determination of elastic-plastic material properties have encouraged the 

development of numerical approaches, or inverse analysis techniques, to recover the elastic-

plastic material properties from P-h curves.  Empirical analytical functions of the P-h curves 

have been derived by fitting the results of extensive FE simulations of the indentation process 

in order to estimate hardness and elastic-plastic material properties (e.g. [15-18]). Cheng and 

Cheng [19, 20] adopted the dimensional analysis approach to derive relationships between 

hardness, loading and unloading curves, and mechanical properties of solids. Dao et al. [21] 
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included the concept of representative strain of indentation in order to reduce the number of 

apparent unknown variables in the dimensionless functions derived by Cheng and Cheng. 

However, these methodologies rely on fitting procedures and are therefore valid only within 

the material properties space considered to build the functions. A variant of the inverse 

analysis technique employs the theory of optimization to find the set of material properties 

that minimizes the error between an experimental, or theoretical experimental, and a 

predicted P-h curve (e.g. [22, 23]). 

 

The present study, exploits the capabilities of the nanoindentation technique to measure small 

volumes of materials in order to characterize the distribution of mechanical properties 

developed during the IFW process of a like-to-like weld of CrMoV steel, arising from the 

phase transformation of the base material (tempered martensite) into two extra phases, i.e. 

quenched martensite and over-tempered martensite. An inverse analysis of the depth-sensing 

indentation tests at nano-scale, based on the optimization theory, has been applied to 

determine the constitutive relationship of each phase given the limitations of the analyses 

based on fitted data and the approximation errors of traditional empirical methods (e.g. 

Oliver-Pharr). 

 

2 Material and methodology 

2.1 Sample preparation 
 
Super-Chromium-Molybdenum-Vanadium (SCMV) is a low alloy ferritic steel of the CrMoV 

family, which provides an enhanced ultimate strength to weight ratio and plain section fatigue 

strength, an improved hardenability and an equivalent or better notch fatigue strength, 

ductility and fracture toughness. This is achieved by the employment of a triple vacuum melt 

route (VIM/EFR/VAR) to increase the cleanness of the material and a two-stage heat-
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treatment, comprised by austenitization at 935°C for 30 minutes and oil quenching and lastly, 

tempering at 570°C for 300 minutes. Therefore, SCMV in the fully heat-treated condition 

exhibits tempered martensite as white nodular precipitates sitting on the lath packets [24]. A 

cross-weld section of an inertia friction weld trial of SCMV-to-SCMV was cut, ground and 

polished to 1 µm before indentation. As shown in Figure 3, Quenched martensite (QM) and 

over-tempered martensite (OTM) extend between approximately 0-3 and 3-5 mm away from 

the weld line. Beyond ~5mm from the weld line, outside the heat affected zone, tempered 

martensite (TM) remains unaffected.  

 

 

Figure 3. Joint section of an inertia friction welded SCMV-to-SCMV showing a schematic illustration of the indentation 
tests performed at three different regions (indenter impressions and indentation offsets are not to scale). 

 

Experimental P-h curves have been extracted with a Nanoindentation Nanotest NTX unit 

using a Berkovich indenter. The indenter has been loaded from an initial contact force (Pi) of 

0.1 mN to a maximum force (Pmax) of 200 mN in a time interval of 20 s, and subsequently 

unloaded to zero in the same time interval. As schematically illustrated in Figure 3, thirty 

indentations were performed in the vicinity of the weld line and in the region within the weld 

line and the base metal, where QM and OTM are known to exist, respectively, and fifteen 

indentations at locations removed from the heat affected zone, where the TM remains 

unaffected. The indentation unit has been setup to conduct three rows of indentations, with an 

offset of 50 µm, along the joint every 50 µm up to a maximum of five and ten columns. The 

extracted data is dispersed with a standard deviation of 22.6, 44.0 and 26.8 µm about the 

mean hmax for the QM, OTM and TM respectively. The Martens hardness (HM) was 
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calculated from each experimental P-h curve and compared to the Vickers hardness (HV) 

reported in Figure 1. The curve with the minimum relative difference between HM and HV 

was selected as representative of the respective phase, as illustrated in Figure 4. 

 

 

Figure 4. Experimental P-h curves corresponding to tempered 

martensite (TM), quenched martensite (QM) and over-tempered 

martensite (OTM) phase. 

 

2.2 Inverse analysis of the depth-sensing indentation test 
 
The inverse analysis presented in this study is based on an iterative optimization procedure 

implemented in MATLAB to find the set of material properties that generates the predicted 

P-h curve that best fits the corresponding experimental curve. The optimization model has 

been defined as follows: 

 

 

𝑓 𝒙𝒊 = ℎD
E>F − ℎ 𝒙𝒊 D

F,E &
G

D8@

	→ min 

 

𝒙𝒊 = 𝐸, 𝜎O, 𝑛
Q,						𝑖 = 1,2,3 

 

𝒙2" 	≤ 𝒙2 	≤ 	𝒙2U,					𝑖 = 1,2,3 

6 
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where f(xi) represents the objective function to be minimized, ℎD
E>F the depth of the 

experimental curve at a load step Pj,  ℎ 𝒙2 D
F,E the depth of the predicted curve at the same 

step of loading, N is the total number of data points included in the loading-unloading curves 

and xi is a vector containing the optimization parameters (mechanical properties), or the 

optimization variables. In order to address the non-uniqueness issue of the inverse analysis of 

indentation purely based on experimentally and FE simulated P-h curves [25, 26], the space 

of possible solutions has been limited by a set of bound constraints, where 𝒙2" and 𝒙2U 

represent the lower and upper boundaries of xi as detailed in section 3.1. Equation 6 has been 

coded in a MATLAB script using the lsqnonlin function available in the Optimization 

Toolbox. Therefore, xi (the properties being optimized) is modified using a trust-region-

reflective algorithm, starting from the initial guess vector (x0), in order to reduce the sum of 

the squared error in the prediction of indentation depth at each load increment point (j),  until 

convergence is reached as detailed in Figure 5. 
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Figure 5. Flow chart of the optimization procedure. 

 

2.3 FE modelling of depth-sensing indentation 

 

The indentation test of a bulk metal, using a Berkovich indenter, has been numerically 

simulated in this study using the ABAQUS Standard 6.12-3 FE code. Due to symmetry, only 

one-half of the model has been analysed in a 3D space as illustrated in Error! Reference 

source not found..  
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Figure 6. Geometry and boundary conditions defined in the 3D indentation model 

 

The Berkovich indenter has been defined as a 3D discrete rigid body using 3-node 3D rigid 

triangular facet elements (R3D3 in ABAQUS). The specimen has been defined as a 3D 

deformable body assuming an isotropic elastic-plastic material model following a Swift 

power law hardening rule, 

 

 𝜎 = 𝐾 𝜀E + 𝜀F
X

 7 

 

where σ is the stress at the corresponding total strain 𝜀Q = 𝜀E + 𝜀F , 𝜀E and 𝜀F are the elastic 

and plastic strain components, K represents the strength coefficient and n the strain hardening 

exponent. From boundary conditions at 𝜀F = 0, K can be defined as follows:   

 

 𝐾 = 𝐸X𝜎O@?X 8 

 

where E is the Young’s modulus and σy the yield stress. The geometry of the deformable 

body was discretized by 4-node linear tetragonal elements (C3D4 in ABAQUS). Beneath the 

indenter, where steep strain gradients are expected, a higher element density has been 
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defined. In this zone, the ratio of height (b) to length (d) of the mesh was maintained to unity 

in order to avoid excessive distortion. 

 

Boundary conditions in the deformable body (specimen) are defined as follows: nodes of 

plane I represent the surface of the specimen and therefore are allowed to displace in the three 

directions (U1, U2, U3) yet are not allowed to cross the plane of symmetry (plane II) in 

fulfilment with the compatibility equations. However, the displacement of nodes in the 

contact areas is governed by a master-slave surface-to-surface boundary condition. The 

master-slave contact interaction between the indenter (master) and the specimen surface 

(slave) was defined with zero contact friction since the effect of friction on the indentation 

process can be assumed negligible [16]. The contact pair has been defined using a surface-to-

surface formulation that considers the shape of both the slave and master surfaces in the 

region of contact. The contact constraints are imposed according to a penalty method in 

which the contact pressure (p) at a point in the deformable body is proportional to the 

penetration distance (h): 

 

 
𝑝 = 0; (ℎ < 0) 

𝑝 = 𝑘Fℎ; (ℎ ≥ 0) 
9 

 

where kp is a large penalty stiffness coefficient used to minimize the penetration of the slave 

surface into the master surface at the constraint locations. By default, ABAQUS sets the 

penalty stiffness (kp) to 10 times a representative underlying element stiffness (ke). Therefore 

the surfaces separate if the contact pressure reduces to zero, and two separated surfaces come 

into contact when the contact pressure is greater than zero. The nodes of plane II, the plane of 

symmetry, can only deform in this plane (U3=UR1=UR2=0). The displacements of the nodes 



14 
 

at plane III located at the bottom surface of the deformable body are fully constrained 

(U1=U2=U3=0) and nodes at the external planes (IV, V and VI) are traction free. A 

sufficiently large domain of size 30 x 30 x 60 µm has been adopted to model a semi-infinite 

deformable body such that the solution results insensitive to the far-field effects. To validate 

this assumption, traction free nodes were constrained with roller boundary conditions such 

that displacements are only allowed in their own planes. The motion of the rigid body is 

determined by a reference point (RP) located at a node in the tip of the Berkovich indenter 

and therefore the loading and boundary conditions associated with the indenter have been 

assigned to this point. The RP, and therefore the indenter, is only allowed to translate in the 

vertical direction (U1=U3=UR1=UR2=UR3=0). A force of one-half the indentation load in 

the vertical direction is defined at the RP. The analysis has been split into two static load 

control steps; during the loading step a load of 0.1 N is applied to the reference point in the 

rigid indenter, during the unloading step the load is reduced to 0.0 N. In the initial step 

(defined for pre-processing) the RP of the indenter is constrained coincident to a node located 

in the centre of the specimen surface at the edge of the surface of symmetry to avoid losing 

contact between nodes in the specimen and the indenter during the loading step. 

 

2.4 Sensitivity of hmax to mesh size, load increments and element type 

This section describes the use of the FE model detailed previously to investigate the 

sensitivity of the predicted maximum indentation depth (hmax) to variations in model 

parameters, such as the mesh size and load step increments. Given the FE model has been 

defined as a load controlled analysis, hmax is an appropriate value to study the model 

parameters as it is related to the elastic and inelastic strain energy absorbed by the specimen 

during loading. The mesh sensitivity study carried out to establish the optimum mesh 

refinement at the contact zone beneath the indenter started with a coarse mesh of size ratio 
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(d/hmax) close to unity, where d is the length of the mesh and hmax is the maximum indentation 

depth obtained from experimental data; therefore the mesh sizes span from ~1.2 to 0.2 µm. 

As shown in Figure 7, hmax reaches convergence at a contact mesh size of 0.6 µm since the 

relative difference in hmax can be considered negligible (Δhmax<1.6%) compared with the 

value predicted by the finest mesh.  

 

 

Figure 7. Sensitivity of hmax to the mesh size at the contact zone. 

 

Finer mesh sizes (0.3 and 0.2 µm) are expected to provide more accurate results given the 

contact conditions between the indenter and the specimen are better represented during the 

simulation but also at an expected higher computation cost as illustrated in Figure 7. During 

loading, the nodes at the edges of the perfectly-sharp indenter come first into contact with the 

surface of the specimen and consequently the elements of the specimen are deformed until 

the surfaces of the indenter and the specimen generate an interface of contact governed by the 

shape of the indenter, in fulfilment with the surface-to-surface contact pair defined in the FE 

model. However, a contact condition may arise in which one node of the indenter exerts a 

load between two nodes of the deformable body, particularly in nodes along the edges of the 

indenter and more significantly at nodes at the edges approaching the perfectly sharp tip of 

the indenter. Therefore as the element density in the deformable body increases, the distance 

between nodes decreases and the accuracy of the model to follow the downward 
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displacement of the indenter increases. The improved accuracy in representing the shape of 

the indenter gained by a finer mesh results in a better enforcement of contact constraints as 

the loading procedure continues and consequently a better prediction of the underlying 

element stiffness, which is of vital importance when using the penalty method. As can be 

seen, the difficulties in representing the contact conditions by coarser meshes are highlighted 

by fluctuations in the predictions of local stiffness (P/dh), as illustrated in Figure 9, which 

consequently results in distorted loading curvatures. The general trend is an increase in 

stiffness as the load is increased, which is associated with the strain-hardening of the 

material. Figure 8 and Figure 9 include a coarse mesh of 1.2 µm for a better appreciation of 

the effects of the mesh size on the shape of the loading curvature; the peaks in stiffness 

indicated with arrows in Figure 9 generate the distortions in the shape of the corresponding 

loading curvature indicated in Figure 8. These fluctuations are therefore attributable to the 

discrete nature of the numerical contact conditions. 

 

 

Figure 8. Effects of the mesh size on the shape of the loading curvature of indentation. 

 

Therefore, although a higher computation time is expected, the reduced error induced to the 

optimization procedure by a smoother loading curve generated by a finer mesh of 

approximate size of 0.2 µm makes it a more favourable option for this study.  
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Figure 9. Local stiffness of the deformable body at a point beneath the tip of the indenter. 

 

It is to be noted that in order to ensure equilibrium is satisfied in the solution of the FE model, 

an increase in mesh density requires an increase in the number of loading steps. Figure 10 

provides evidence of the almost negligible sensitivity of hmax to the number of steps used in 

the solution process (Δhmax < 0.073%), where Δhmax is the relative increment in hmax predicted 

by a model defined with 80 loading steps compared to a model of 200 steps. However, as 

expected the run times are significantly increased by increasing the number of load steps. 

Additionally, from the sensitivity study of hmax to yield stress described later in this section, it 

is possible to prove that a relative difference of +0.073% in hmax represents a relative 

difference of less than -0.25% in yield stress. Therefore, we can conclude 80 load increments 

provide a robust solution that ensures equilibrium is satisfied at every load increment when 

using a mesh at the contact zone of approximate size of 0.2 µm.  
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Figure 10. Sensitivity of hmax to loading steps. 

 

However, since the optimization procedure involves the iterative solution of a highly non-

linear problem with an added complexity of a constantly changing non-linear material 

property database, and considering the effects of the loading increments on the prediction of 

indentation depth is negligible, an automatic increment FE model with defined initial, 

minimum and maximum increment sizes will be used in this study with the intention of 

ensuring the robustness of the optimized solution. The change in hmax predicted by a model 

using an automatic step increment, relative to a model of 200 loading steps, is approximately 

+0.35%, which consequently induces a relative difference of less than -1% to the yield stress 

prediction. Having discussed the advantages of a proper fit between the surface of the 

indenter and the elements of the deformable body on the accuracy to capture the indentation 

depth h, it is reasonable to investigate the necessity of using quadratic elements to mesh the 

deformable body. Three simulations modelled with quadratic elements of 1.2, 0.6 and 0.2 µm 

of length were run and compared with the curve predicted by the model meshed with 0.2	µm 

linear elements as illustrated in Figure 11. As expected, the sensitivity of hmax to the element 

mesh size is negligible when using quadratic elements as the distance between any 2 nodes, 

and the added capability of a quadratic variation of displacement is more able to represent the 

contact conditions. The change in hmax between the 0.2 µm quadratic element model, relative 

to the 0.2 µm linear element model, is less than +1.43% which represents an approximate 

relative change of less than -4.2% in the prediction of yield stress according to the parametric 

analysis carried out in this study. However, the computation time of the quadratic solution is 

drastically increased by a factor of 56, which makes it computationally unaffordable for the 

optimization algorithm. Quadratic elements however, can be used to assess some of the 

factors affecting depth-sensing indentation data such as tip imperfections arising from the 
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complexity of manufacturing indenters with ideal geometry and wear occurring in practice, 

and the pile-up/sink-in phenomena. A difference of -0.9% in the FE prediction of hmax was 

observed with an indenter modelled as non-ideal, relative to the model assuming a perfectly 

sharp indenter. This in turn may induce a difference in the predicted value of σy of up to 

+2.7%. In order to account for the non-ideal geometry, the tip of the indenter was assumed 

flat with a triangular area of approximately 0.0032 µm2, which corresponds to the 

imperfection usually observed in experimental Berkovich indenters [27]. The degree of pile-

up/sink-in is one of the most serious factors that complicate the interpretation of indentation 

data as this cannot be directly related to the P-h curve. During the fully plastic regime, it is 

observed that elastic-plastic materials may either pile-up or sink-in depending on the strain 

hardening exponent n and the ratio σy/E [9]. Therefore, the study of the evolution of the 

surface profile during indentation provides additional information to limit the space of 

possible solutions of the inverse analysis of indentation. This feature however, will be 

included in the optimization algorithm of a further investigation. 

 

 

 

Figure 11. P-h curves predicted using second order elements. 
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2.5 Sensitivity of loading and unloading steps in depth-sensing indentation predictions to 

material properties of the specimen 

 

The sensitivity of the predicted P-h curves, with respect to an FE simulation using a set of 

reference material properties, to the individual variation of up to ±20% in the values of these 

properties is presented in Figure 12. The yield strength largely influences the indentation 

depths of the P-h curve as can be appreciated in Figure 12a due to the larger load (P) required 

to produce yielding and consequently plastic flow, yet the shape of the unloading curve 

appears to remain unaltered. This is not the case for the variation of the Young’s modulus, 

which slightly modifies the loading requirements and consequently the indentation depth, but 

also changes the unloading shape defined by the contact stiffness (S) due to the known 

dependency of S to the elastic modulus E (see Equation 2), as shown in Figure 12b. 

Therefore, it is possible to conclude the loading portion of the curve is largely influenced by 

the yield strength whereas the unloading portion is more sensitive to the Young’s modulus of 

the bulk metal. 

 

  

a) b) 

Figure 12. Effects of the a) yield strength and b) elastic modulus on the predicted empirical parameters of loading and 

unloading. 
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The sensitivity of the predicted indentation depth, h, at Pmax is shown in Figure 13 to be 

almost negligible to the variation of the Poisson’s ratio and the strain hardening exponent 

compared to E and σy. Furthermore, unlike the strain hardening exponent, Poisson’s ratio of 

metals has been studied extensively in the past and it is typically accepted to be around 0.3 in 

the elastic regime, increasing to 0.5 in the plastic regime [28]; therefore it is not included as 

an optimization parameter in this study but it is rather considered as a constant mechanical 

property of magnitude of 0.3. Figure 13 also highlights the predicted value of hmax is affected 

by both the magnitude of E and σy in a ratio of 0.17:1% and 0.34:1% respectively. The nearly 

linear relationship between σy and hmax has been used to test the sensitivity of the FE model to 

some simulation parameters as detailed previously.  

 

 

Figure 13. Effects of the variation of σy, E, v, and n on the 

maximum indentation depth (hmax). 

 
 
3 Results and discussion 

 

Three different regions across the joint of an IFWed CrMoV steel have been characterised 

using the inverse analysis technique proposed in this study, including the parent phase of 

tempered martensite (TM) and two child phases formed as an effect of the welding process, 

over-tempered martensite (OTM) and quenched martensite (QM).  
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3.1 Determining elastic-plastic properties across the heat affected zone from instrumented 

indentation data 

The assessment of the capability of this method to determine the elastic-plastic properties of 

each of these phases choosing a set of initial guess material properties is summarized in Table 

1. The bound constraints have been defined as follows: for most steels, Young’s modulus has 

a value of about 200 GPa [29] and therefore the solution is limited to a range between 200-

225 GPa, although for the case of TM, the space was reduced to 200-215 GPa to improve the 

fitting. Following Tabor’s relationship [30] of Vickers hardness (reported in Figure 1), the 

yield stress at 8% plastic strain of martensite in the tempered, quenched and over-aged 

condition formed during IFW of SCMV steel reaches approximately 1600, 2500 and 1200 

MPa, respectively and therefore the respective constraints for the initial yield stress (εp=0) 

were set to 1300-1600, 2000-2200 and 900-1200. SCMV in the tempered condition tested in 

compression experiences low to moderate strain hardening [1] and therefore the n value was 

limited to up to 0.15 for the TM phase and up to 0.25 for QM and OTM. The initial guess 

parameters were set to start at the respective upper bound constraints.  

 

Table 1. Set up and results for optimization. 

Phase 
Optimization 

parameter 

Initial guess 

parameters 
Bound constraints 

Optimized 

parameters 

Tempered 

martensite (TM) 

E 215000 [MPa] 200000 < E [MPa] < 215000 213954 [MPa] 

σy 1600 [MPa] 1300 < σy [MPa] < 1600 1409 [MPa] 

n 0.15 0 < n < 0.15 0.1015 

     

Quenched 

martensite (QM) 

E 225000 [MPa] 200000 < E [MPa] < 225000 205824 [MPa] 

σy 2200 [MPa] 2000 < σy [MPa] < 2200 2170 [MPa] 

n 0.25 0 < n < 0.25 0.25 



23 
 

     

Over-tempered 

martensite 

(OTM) 

E 225000 [MPa] 200000 < E [MPa] < 225000 220608 [MPa] 

σy 1200 [MPa] 900 < σy [MPa] < 1200 952 [MPa] 

n 0.25 0 < n < 0.25 0.0971 

 

The capability of the inverse analysis proposed in this study to fit three different experimental 

indentation P-h curves extracted from the three characteristic regions formed across the joint 

of IFWed cylinders of CrMoV steel is evidenced in Figure 14. A relative error in the 

predicted maximum indentation depth (hmax) less than 1.44, 1.13 and 1.16% for the martensite 

in the tempered, quenched and over-tempered condition respectively has been achieved. 

Recalling from section 2.5, the predicted value of hmax is affected by both the variation in the 

magnitude of E and σy in a ratio of 0.17:1% and 0.34:1% and therefore a slight variation 

along the indentation loop can be attributed partly to the unconstrained optimization 

algorithm implemented at this stage and partly to the complexity in representing by an FE 

model the contact mechanics involved in a depth-sensing indentation operation, including the 

deformation of the indenter, the effects of tip imperfections and misalignment of the indenter 

or the interaction of asperities at the indenter-sample interface. 

 

 

Figure 14. Comparison of P-h curves obtained from 

experimental data and FE model using the optimized parameters 
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for martensite in the tempered (TM), quenched (QM) and over-

tempered (OTM) condition. 

 

In order to prove the capability of the model to converge to an optimum solution, the effects 

of the initial guess parameters on the optimized parameters have been evaluated as presented 

in Figure 15. 
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The initial guess parameters, E, σy and n respectively, were changed to start from the lower 

bound constraints, i.e. at 7, 19 and 67%, 11, 9 and 80%, and 11, 25 and 80% away from the 

original initial guess parameters for the case of TM, QM and OTM respectively. 

Notwithstanding, the optimization model converged to a solution to within a difference of 

0.5, 1.0, and 5.7%, 1.2, 0.9 and 0.0%, and 0.5, 3.5 and 15% for the case of TM, QM and 

OTM respectively, relative to the values approximated by the original model. Convergence of 

all optimized parameters has been achieved rapidly in less than 10 iterations for the three 

phases. A higher variation in the solution of the strain hardening exponent (n) was expected 

given the complexity of representing analytically the plastic behaviour of metals and the 

limited information available in the P-h curve regarding the strain hardening behaviour of the 

indented metal, as can be inferred from to the low sensitivity of the curve to this optimization 

parameter as shown in Figure 13. However, after convergence has been reached, the inverse 

analysis approach proposed in this study proved to be a highly reliable method for predicting 

the key material properties to generate a full elastic-plastic stress-strain curve of a strain 

hardening material as detailed below.  

3.2 Evaluation of the across-weld properties 

 

Figure 16 presents a comparison of two stress-strain curves, a curve obtained experimentally 

from a compressive test of an axisymmetric sample of CrMoV steel in the tempered condition 

at room temperature [1] and a curve built by evaluating Swift’s relationship (Equation 7) with 

the optimized material properties predicted for the tempered martensite reported in Table 1. 

An almost negligible difference of less than 1 and 0.9% in the optimized value of Young’s 

modulus and yield stress respectively is exhibited within the elastic region (εp=0), relative to 

the experimental properties, regardless of the initial guess value. After 8% of plastic strain 

𝜀F = 0.08  the flow stress reaches a relative difference of approximately 10%, which can be 
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attributed to the volume of material tested by these two techniques. Furthermore, it is to be 

recognized that Swift’s law is an idealization that usually does not represent the constitutive 

relationship of a real engineering material. 

 

 

Figure 16. Comparison of the stress-strain curve generated 

experimentally from a compressive test on a CrMoV steel sample 

and the curve built using the optimized material properties 

predicted by the inverse analysis. 

 

Tempered martensite exhibits equiaxed grains of α-ferrite (bcc) plus spherodized precipitates 

of Fe3C (cementite) [31] and therefore different material properties are expected from grain 

to grain. The typical grain size of tempered martensite is about 2-3 µm and the projected area 

left by the Berkovich indenter penetrating the tempered martensite at full load under the 

conditions specified in section 2.1 is that of an equilateral triangle of base a~9.5 µm and 

height l~8.2 µm as schematically illustrated in Figure 17; therefore during nanoindentation, 

the indenter is in contact with a region shared by a small number of grains. On the other hand, 

the compressive test extracts the stress-strain relationship of the tempered martensite as a 

bulk metal comprised of several millions of grains and therefore a slight difference in the 

stress-strain curve is expected. Additionally, considering the IFW process is largely 
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dominated by thermal strains, this difference is not expected to influence the prediction of the 

residual stress field in the as-welded condition [8]. 

 

 

Figure 17. Schematic illustration of the impression left by a 

Vickers indenter loaded at 0.1kg and the projected area of 

the Berkovich indenter penetrating the tempered martensite 

lattice. 

 

Having validated the results of the inverse analysis with experimental data extracted from a 

CrMoV steel in the tempered condition, TM can be used as a reference to test the results 

obtained for the QM and OTM as follows. Martensite in the quenched and over-tempered 

condition exhibits a Vickers hardness of approximately 760HV0.1, and 375HV0.1 

respectively, or 1.52 and 0.75 respectively the value of the tempered martensite located 

outside the HAZ (500HV0.1). These ratios are consistent with the optimized values of yield 

stress obtained by the proposed inverse analysis technique as summarized in Table 1, 2170 

MPa for quenched martensite and 952 MPa for over-tempered martensite, or 1.54 and 0.68 

the optimized value of yield stress of the tempered martensite (1409 MPa) respectively. The 

comparison is valid given the relationship between Vickers hardness and yield stress derived 

by Tabor [30].The area of the impression left by the Vickers indenter loaded to 0.1 kg in the 
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tempered martensite is approximately 52 times the projected area of the Berkovich indenter at 

full load (0.2N) as schematically illustrated in Figure 17; therefore due to the significantly 

larger number of grains tested by the Vickers indenter compared to the volume covered by 

the Berkovich indenter, and the fact that the microhardness test neglects the participation of 

elastic strains, a slight variation in hardness value, and consequently in the value of yield 

stress is expected as it is the case in this study. These results justify the applicability of the 

proposed inverse analysis in the characterisation of material property variation across an IFW 

of CrMoV steel. The optimized parameters can be used therefore to model each of the 

material phases present during the IFW process in order to provide more accurate material 

data for use in FE models to improve the prediction of the residual stress field in the as-

welded condition and to aid the assessment of the performance of the weld under in-service 

conditions.  

 

4 Conclusions 

 

This work describes an inverse analysis of the depth-sensing indentation technique applied in 

the extraction of elastic-plastic properties of a parent phase, tempered martensite, and two 

child phases, quenched martensite and over-tempered martensite, across the joint of two 

IFWed sections of CrMoV steel. The accuracy of the FE model implemented in this study to 

simulate the indentation process of CrMoV steel in the tempered condition has been validated 

against experimental data. The FE simulated P-h curve of TM were in good agreement with 

the P-h curve recorded by the Nanotest NTX unit, however the FE simulation slightly over-

estimated in ~1% the measured depth at full load (hmax) and ~2.9% after the load has been 

completely removed (hf). The discrepancy can be attributed to the different constitutive 

behaviour of a small volume of material compared to the bulk metal properties, to the power 
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law idealization of the constitutive relationship, and to the complexities of representing the 

mechanics of contact. A parametric analysis was carried out using this FE model in order to 

study the sensitivity of the P-h curve to the Young’s modulus (E), yield stress (σy), Poisson’s 

ratio (v) and strain hardening exponent (n); the results showed a high impact to the loading 

curvature and consequently the value of maximum depth (hmax) in up to 0.17:1% and 0.34:1% 

due to variations in E and σy respectively. Additionally, the parametric analysis provides 

evidence of the effect of the Young’s modulus on the value of contact stiffness (S) of the 

material during unloading, which controls the slope of the unloading section in a typical P-h 

curve. Based on the unification of knowledge gained from experimental data of the alloy 

studied in this work, the experimental programme carried out and the results provided by the 

parametric analysis, it was possible to build an inverse analysis capable of generating a more 

accurate material database containing full elastic-plastic stress-strain relationships of up to 

three phases involved during the IFW process of a CrMoV steel, namely tempered 

martensite, quenched martensite and over-tempered martensite.  The accuracy of the inverse 

analysis proposed in this study to predict the set of material properties that define the elastic-

plastic stress-strain relationship of each of these phases is supported and validated by its 

capability of fitting three experimental curves extracted from different locations across the 

joint, where these phases are known to exist, within a maximum relative difference of 1.5% 

in the values of maximum depth. Furthermore, based on the accepted relationship described 

by Tabor [30] between Vickers hardness (HV) and yield stress (σy), it was possible to validate 

the magnitudes of σy provided by the optimization algorithm since the ratio of σy between the 

tempered martensite (TM) and each child phase, quenched martensite (QM) and over-

tempered martensite (OTM), 1.54:1 and 0.68:1 respectively, is consistent with the ratio of HV 

between each of these pairs, i.e. 1.52:1 and 0.75:1 respectively, as shown in the 

microhardness test conducted across the joint of an inertia friction weld (IFW) of two 
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cylindrical sections of CrMoV steel. Furthermore, the model proved its reliability to converge 

to an optimum solution in terms of the optimized parameters E and σy to within less than 1.2 

and 3.5% respectively, regardless of the position of the initial guess parameters. The 

relatively higher variation (<15%) in the optimized value of n can be attributed to the low 

sensitivity of the P-h curve to this parameter and therefore an improved model including 

information regarding the evolution of the surface profile of indentation, which is strongly 

linked to the plastic behaviour, is being prepared for a future publication.  
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