Skip to main content

Research Repository

Advanced Search

Investigating lung responses with functional hyperpolarized xenon-129 MRI in an ex vivo rat model of asthma

Lilburn, David M.L.; Tatler, Amanda L.; Six, Joseph S.; Lesbats, Cl�mentine; Habgood, Antony; Porte, Joanne; Hughes-Riley, Theodore; Shaw, Dominick E.; Jenkins, Gisli; Meersmann, Thomas

Investigating lung responses with functional hyperpolarized xenon-129 MRI in an ex vivo rat model of asthma Thumbnail


Authors

David M.L. Lilburn

AMANDA TATLER AMANDA.TATLER@NOTTINGHAM.AC.UK
Principal Research Fellow

Joseph S. Six

Cl�mentine Lesbats

Antony Habgood

Joanne Porte

Theodore Hughes-Riley

Dominick E. Shaw

Gisli Jenkins

THOMAS MEERSMANN thomas.meersmann@nottingham.ac.uk
Professor of Translational Imaging



Abstract

© 2015 The Authors. Wiley Periodicals, Inc. Purpose: Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. Methods: Hyperpolarized (hp) 129Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp 129Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. Results: Significant differences were demonstrated between control and OVA challenged animals on global lung hp 129Xe gas inhalation with P < 0.05 at MCh dosages above 460 μg. Spatial mapping of the regional hp gas distribution revealed an approximately three-fold increase in heterogeneity for the asthma model organs. Conclusion: The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224–1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation

Lilburn, D. M., Tatler, A. L., Six, J. S., Lesbats, C., Habgood, A., Porte, J., …Meersmann, T. (2015). Investigating lung responses with functional hyperpolarized xenon-129 MRI in an ex vivo rat model of asthma. Magnetic Resonance in Medicine, 76(4), 1224-1235. https://doi.org/10.1002/mrm.26003

Journal Article Type Article
Acceptance Date Sep 8, 2015
Online Publication Date Oct 28, 2015
Publication Date Oct 28, 2015
Deposit Date Feb 5, 2016
Publicly Available Date Feb 5, 2016
Journal Magnetic Resonance in Medicine
Print ISSN 0740-3194
Electronic ISSN 1522-2594
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 76
Issue 4
Pages 1224-1235
DOI https://doi.org/10.1002/mrm.26003
Keywords pulmonary imaging; hyperpolarized noble gas
MRI; hp 129Xe; ovalbumin (OVA) rat model of asthma; methacholine challenges; airway hyper-responsiveness
Public URL https://nottingham-repository.worktribe.com/output/763022
Publisher URL http://onlinelibrary.wiley.com/doi/10.1002/mrm.26003/abstract
Contract Date Feb 5, 2016

Files





You might also like



Downloadable Citations