Skip to main content

Research Repository

Advanced Search

Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

Duncanson, Laura; Kellner, James R.; Armston, John; Dubayah, Ralph; Minor, David M.; Hancock, Steven; Healey, Sean P.; Patterson, Paul L.; Saarela, Svetlana; Marselis, Suzanne; Silva, Carlos E.; Bruening, Jamis; Goetz, Scott J.; Tang, Hao; Hofton, Michelle; Blair, Bryan; Luthcke, Scott; Fatoyinbo, Lola; Abernethy, Katharine; Alonso, Alfonso; Andersen, Hans Erik; Aplin, Paul; Baker, Timothy R.; Barbier, Nicolas; Bastin, Jean Francois; Biber, Peter; Boeckx, Pascal; Bogaert, Jan; Boschetti, Luigi; Boucher, Peter Brehm; Boyd, Doreen S.; Burslem, David F.R.P.; Calvo-Rodriguez, Sofia; Chave, Jérôme; Chazdon, Robin L.; Clark, David B.; Clark, Deborah A.; Cohen, Warren B.; Coomes, David A.; Corona, Piermaria; Cushman, K. C.; Cutler, Mark E.J.; Dalling, James W.; Dalponte, Michele; Dash, Jonathan; de-Miguel, Sergio; Deng, Songqiu; Ellis, Peter Woods; Erasmus, Barend; Fekety, Patrick A.; Fernandez-Landa, Alfredo; Ferraz, Antonio; Fischer, Rico; Fisher, Adrian G.; García-Abril, Antonio; Gobakken,...

Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission Thumbnail


Authors

Laura Duncanson

James R. Kellner

John Armston

Ralph Dubayah

David M. Minor

Steven Hancock

Sean P. Healey

Paul L. Patterson

Svetlana Saarela

Suzanne Marselis

Carlos E. Silva

Jamis Bruening

Scott J. Goetz

Hao Tang

Michelle Hofton

Bryan Blair

Scott Luthcke

Lola Fatoyinbo

Katharine Abernethy

Alfonso Alonso

Hans Erik Andersen

Paul Aplin

Timothy R. Baker

Nicolas Barbier

Jean Francois Bastin

Peter Biber

Pascal Boeckx

Jan Bogaert

Luigi Boschetti

Peter Brehm Boucher

DOREEN BOYD doreen.boyd@nottingham.ac.uk
Professor of Earth Observation

David F.R.P. Burslem

Sofia Calvo-Rodriguez

Jérôme Chave

Robin L. Chazdon

David B. Clark

Deborah A. Clark

Warren B. Cohen

David A. Coomes

Piermaria Corona

K. C. Cushman

Mark E.J. Cutler

James W. Dalling

Michele Dalponte

Jonathan Dash

Sergio de-Miguel

Songqiu Deng

Peter Woods Ellis

Barend Erasmus

Patrick A. Fekety

Alfredo Fernandez-Landa

Antonio Ferraz

Rico Fischer

Adrian G. Fisher

Antonio García-Abril

Terje Gobakken

Jorg M. Hacker

Marco Heurich

Ross A. Hill

Chris Hopkinson

Huabing Huang

Stephen P. Hubbell

Andrew T. Hudak

Andreas Huth

Benedikt Imbach

Kathryn J. Jeffery

Masato Katoh

Elizabeth Kearsley

David Kenfack

Natascha Kljun

Nikolai Knapp

Kamil Král

Martin Krůček

Nicolas Labrière

Simon L. Lewis

Marcos Longo

Richard M. Lucas

Russell Main

Jose A. Manzanera

Rodolfo Vásquez Martínez

Renaud Mathieu

Herve Memiaghe

Victoria Meyer

Abel Monteagudo Mendoza

Alessandra Monerris

Paul Montesano

Felix Morsdorf

Erik Næsset

Laven Naidoo

Reuben Nilus

Michael O’Brien

David A. Orwig

Konstantinos Papathanassiou

Geoffrey Parker

Christopher Philipson

Oliver L. Phillips

Jan Pisek

John R. Poulsen

Hans Pretzsch

Christoph Rüdiger

Sassan Saatchi

Arturo Sanchez-Azofeifa

Nuria Sanchez-Lopez

Robert Scholes

Carlos A. Silva

Marc Simard

Andrew Skidmore

Krzysztof Stereńczak

Mihai Tanase

Chiara Torresan

Ruben Valbuena

Hans Verbeeck

Tomas Vrska

Konrad Wessels

Joanne C. White

Lee J.T. White

Eliakimu Zahabu

Carlo Zgraggen



Abstract

NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.

Journal Article Type Article
Acceptance Date Dec 4, 2021
Online Publication Date Jan 7, 2022
Publication Date Mar 1, 2022
Deposit Date Feb 1, 2022
Publicly Available Date Feb 1, 2022
Journal Remote Sensing of Environment
Print ISSN 0034-4257
Publisher Elsevier BV
Peer Reviewed Peer Reviewed
Volume 270
Article Number 112845
DOI https://doi.org/10.1016/j.rse.2021.112845
Keywords Computers in Earth Sciences; Geology; Soil Science
Public URL https://nottingham-repository.worktribe.com/output/7370567
Additional Information This article is maintained by: Elsevier; Article Title: Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission; Journal Title: Remote Sensing of Environment; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.rse.2021.112845; Content Type: article; Copyright: © 2021 The Authors. Published by Elsevier Inc.

Files







You might also like



Downloadable Citations