Ian H. Smith
Viscosity development during aqueous dispersion and dissolution: a comparison of PGX® with other dietary supplements and individual polysaccharides
Smith, Ian H.; Lawson, Christopher J.; Harding, Stephen E.; Gahler, Roland J.; Lyon, Michael R.; Wood, Simon
Authors
Christopher J. Lawson
Professor STEPHEN HARDING STEVE.HARDING@NOTTINGHAM.AC.UK
PROFESSOR OF APPLIED BIOCHEMISTRY
Roland J. Gahler
Michael R. Lyon
Simon Wood
Abstract
Viscosity development with time was studied during the aqueous dissolution of the novel polysaccharide complex PGX®, a finer particle size version used in meal replacement PGXf, and a blend of the three polysaccharides 3PB used in their manufacture. Results were compared with those of single polysaccharides and other commercially available soluble-fibre supplements. Measurements were made at 25.0 C in a rheometer vane and cup system at ~1000 s-1. Samples suspended in low MW PEG were discharged from a syringe into water under shear in the measuring system. Final mixtures contained 0.5% w/w sample and 2% w/w PEG. Most samples reaching high final equilibrium/ultimate viscosities (12e138 mPa s), appeared to dissolve completely within 1 h but four samples required 1.5 to >14 h. PGX®, PGXf and 3PB gave the highest ultimate viscosities within timescales relevant to stomach emptying. Viscosityetime data were reasonably reproducible except those for xanthan gum. Distinct steps in viscosity development curves for 3PB and Biomed Type 2 were attributed to different dissolution rates of their component polysaccharides. For samples reaching final viscosities < 12 mPa s, dietary fibre products often left residues of insoluble material whilst single polysaccharides appeared to dissolve completely. Attempts at curve fitting the dissolution profiles to single-exponential or logarithmic models failed. Better representations were obtained using a two-component exponential model due to Kravtchenko, Renoir, Parker, and Brigand (1999) or a four-component extension of this model. Dissolution rates were also compared using time to reach 50 and 80% of the ultimate viscosity at full dissolution.
Citation
Smith, I. H., Lawson, C. J., Harding, S. E., Gahler, R. J., Lyon, M. R., & Wood, S. (2014). Viscosity development during aqueous dispersion and dissolution: a comparison of PGX® with other dietary supplements and individual polysaccharides. Food Hydrocolloids, 38, https://doi.org/10.1016/j.foodhyd.2013.12.004
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 3, 2013 |
Online Publication Date | Dec 12, 2013 |
Publication Date | Jul 31, 2014 |
Deposit Date | May 11, 2017 |
Journal | Food Hydrocolloids |
Print ISSN | 0268-005X |
Electronic ISSN | 1873-7137 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 38 |
DOI | https://doi.org/10.1016/j.foodhyd.2013.12.004 |
Keywords | Polysaccharide dissolution ; Dietary supplement dissolution ; Viscosity development ; Vane and cup viscometry ; PGX® ; PolyGlycopleX® |
Public URL | https://nottingham-repository.worktribe.com/output/731717 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0268005X13003883 |
Contract Date | May 11, 2017 |
You might also like
Origins of polysaccharide conformation and viscoelasticity in miscible heterogeneous solvent
(2023)
Preprint / Working Paper
Evaluation of two terpene-derived polymers as consolidants for archaeological wood
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search