Giulio Chiribella
Quantum benchmarks for pure single-mode Gaussian states
Chiribella, Giulio; Adesso, Gerardo
Abstract
Teleportation and storage of continuous variable states of light and atoms are essential building blocks for the realization of large-scale quantum networks. Rigorous validation of these implementations require identifying, and surpassing, benchmarks set by the most effective strategies attainable without the use of quantum resources. Such benchmarks have been established for special families of input states, like coherent states and particular subclasses of squeezed states. Here we solve the longstanding problem of defining quantum benchmarks for general pure Gaussian single-mode states with arbitrary phase, displacement, and squeezing, randomly sampled according to a realistic prior distribution. As a special case, we show that the fidelity benchmark for teleporting squeezed states with totally random phase and squeezing degree is 1/2, equal to the corresponding one for coherent states. We discuss the use of entangled resources to beat the benchmarks in experiments.
Citation
Chiribella, G., & Adesso, G. (2014). Quantum benchmarks for pure single-mode Gaussian states. Physical Review Letters, 112(1), https://doi.org/10.1103/PhysRevLett.112.010501
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 7, 2013 |
Publication Date | Jan 7, 2014 |
Deposit Date | Oct 12, 2017 |
Publicly Available Date | Oct 12, 2017 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 112 |
Issue | 1 |
DOI | https://doi.org/10.1103/PhysRevLett.112.010501 |
Public URL | https://nottingham-repository.worktribe.com/output/722125 |
Publisher URL | https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.010501 |
Additional Information | © 2014 American Physical Society |
Contract Date | Oct 12, 2017 |
Files
14PRL_112_010501.pdf
(382 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf
You might also like
Every quantum helps: Operational advantage of quantum resources beyond convexity
(2024)
Journal Article
A Post-Quantum Associative Memory
(2023)
Journal Article
Fundamental limitations to key distillation from Gaussian states with Gaussian operations
(2023)
Journal Article
Towards the ultimate brain: Exploring scientific discovery with ChatGPT AI
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search