Cheryl V. Rahman
Adjuvant chemotherapy for brain tumors delivered via a novel intra-cavity moldable polymer matrix
Rahman, Cheryl V.; Smith, Stuart J.; Morgan, Paul S.; Langmack, Keith A.; Clarke, Phil A.; Ritchie, Alison A.; Macarthur, Donald C.; Rose, Felicity R.A.J.; Shakesheff, Kevin M.; Grundy, Richard G.; Rahman, Ruman
Authors
Stuart J. Smith
Paul S. Morgan
Keith A. Langmack
Phil A. Clarke
Alison A. Ritchie
Donald C. Macarthur
Professor FELICITY ROSE FELICITY.ROSE@NOTTINGHAM.AC.UK
PROFESSOR OF BIOMATERIALS AND TISSUE ENGINEERING
Kevin M. Shakesheff
Richard G. Grundy
Professor Ruman Rahman RUMAN.RAHMAN@NOTTINGHAM.AC.UK
PROFESSOR OF MOLECULAR NEURO-ONCOLOGY
Abstract
INTRODUCTION
Polymer-based delivery systems offer innovative intra-cavity administration of drugs, with the potential to better target micro-deposits of cancer cells in brain parenchyma beyond the resected cavity. Here we evaluate clinical utility, toxicity and sustained drug release capability of a novel formulation of poly(lactic-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) microparticles.
METHODS
PLGA/PEG microparticle-based matrices were molded around an ex vivo brain pseudo-resection cavity and analyzed using magnetic resonance imaging and computerized tomography. In vitro toxicity of the polymer was assessed using tumor and endothelial cells and drug release from trichostatin A-, etoposide- and methotrexate-loaded matrices was determined. To verify activity of released agents, tumor cells were seeded onto drug-loaded matrices and viability assessed.
RESULTS
PLGA/PEG matrices can be molded around a pseudo-resection cavity wall with no polymer-related artifact on clinical scans. The polymer withstands fractionated radiotherapy, with no disruption of microparticle structure. No toxicity was evident when tumor or endothelial cells were grown on control matrices in vitro. Trichostatin A, etoposide and methotrexate were released from the matrices over a 3-4 week period in vitro and etoposide released over 3 days in vivo, with released agents retaining cytotoxic capabilities. PLGA/PEG microparticle-based matrices molded around a resection cavity wall are distinguishable in clinical scanning modalities. Matrices are non-toxic in vitro suggesting good biocompatibility in vivo. Active trichostatin A, etoposide and methotrexate can be incorporated and released gradually from matrices, with radiotherapy unlikely to interfere with release.
CONCLUSION
The PLGA/PEG delivery system offers an innovative intra-cavity approach to administer chemotherapeutics for improved local control of malignant brain tumors.
Citation
Rahman, C. V., Smith, S. J., Morgan, P. S., Langmack, K. A., Clarke, P. A., Ritchie, A. A., Macarthur, D. C., Rose, F. R., Shakesheff, K. M., Grundy, R. G., & Rahman, R. (2013). Adjuvant chemotherapy for brain tumors delivered via a novel intra-cavity moldable polymer matrix. PLoS ONE, 8(10), Article e77435. https://doi.org/10.1371/journal.pone.0077435
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 2, 2013 |
Publication Date | Oct 14, 2013 |
Deposit Date | Oct 18, 2016 |
Publicly Available Date | Oct 18, 2016 |
Journal | PloS one |
Electronic ISSN | 1932-6203 |
Publisher | Public Library of Science |
Peer Reviewed | Peer Reviewed |
Volume | 8 |
Issue | 10 |
Article Number | e77435 |
DOI | https://doi.org/10.1371/journal.pone.0077435 |
Public URL | https://nottingham-repository.worktribe.com/output/718787 |
Publisher URL | http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077435 |
Contract Date | Oct 18, 2016 |
Files
PLoS ONE 2013 Rahman.pdf
(1.5 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
T1 based oxygen-enhanced MRI in tumours; a scoping review of current research
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search