E.D. Kay
Inertial effects at moderate Reynolds number in thin-film rimming flows driven by surface shear
Kay, E.D.; Hibberd, S.; Power, H.
Authors
S. Hibberd
H. Power
Abstract
In this paper, we study two-dimensional thin-film flow inside a stationary circular cylinder driven by an imposed surface shear stress. Modelling is motivated by a need to understand the cooling and film dynamics provided by oil films in an aero-engine bearing chamber characterised by conditions of very high surface shear and additional film mass flux from oil droplets entering the film through the surface. In typical high-speed operation, film inertial effects can provide a significant leading-order mechanism neglected in existing lubrication theory models. Inertia at leading-order is included within a depth-averaged formulation where wall friction is evaluated similar to hydraulic models. This allows key nonlinear inertial effects to be included while retaining the ability to analyse the problem in a mathematically tractable formulation and compare with other approaches. In constructing this model, a set of simplified mass and momentum equations are integrated through the depth of the film yielding a spatially one-dimensional depth-averaged formulation of the problem. An a priori assumed form of velocity profile is needed to complete the system. In a local Stokes flow analysis, a quadratic profile is the exact solution for the velocity field though it must be modified when inertial effects become important. Extension of the velocity profile to a cubic profile is selected enabling specification of a wall friction model to include the roughness of the cylinder wall. A modelling advantage of including the inertia term, relevant to the applications considered, is that a smooth progression in solution can be obtained between cases of low Reynolds number corresponding to lubrication theory, and high Reynolds number corresponding to uniform rimming-flow. Importantly, we also investigate the effect of inertia on some typical solutions from other studies and present a greater insight to existing and new film solutions which arise from including inertia effects.
Citation
Kay, E., Hibberd, S., & Power, H. (in press). Inertial effects at moderate Reynolds number in thin-film rimming flows driven by surface shear. Physics of Fluids, 25(10), https://doi.org/10.1063/1.4825134
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 25, 2013 |
Online Publication Date | Oct 18, 2013 |
Deposit Date | Oct 16, 2017 |
Journal | Physics of Fluids |
Print ISSN | 1070-6631 |
Electronic ISSN | 1089-7666 |
Publisher | American Institute of Physics |
Peer Reviewed | Peer Reviewed |
Volume | 25 |
Issue | 10 |
DOI | https://doi.org/10.1063/1.4825134 |
Public URL | https://nottingham-repository.worktribe.com/output/718648 |
Publisher URL | http://aip.scitation.org/doi/10.1063/1.4825134 |
Contract Date | Oct 15, 2017 |
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search