@article { , title = {Inertial effects at moderate Reynolds number in thin-film rimming flows driven by surface shear}, abstract = {In this paper, we study two-dimensional thin-film flow inside a stationary circular cylinder driven by an imposed surface shear stress. Modelling is motivated by a need to understand the cooling and film dynamics provided by oil films in an aero-engine bearing chamber characterised by conditions of very high surface shear and additional film mass flux from oil droplets entering the film through the surface. In typical high-speed operation, film inertial effects can provide a significant leading-order mechanism neglected in existing lubrication theory models. Inertia at leading-order is included within a depth-averaged formulation where wall friction is evaluated similar to hydraulic models. This allows key nonlinear inertial effects to be included while retaining the ability to analyse the problem in a mathematically tractable formulation and compare with other approaches. In constructing this model, a set of simplified mass and momentum equations are integrated through the depth of the film yielding a spatially one-dimensional depth-averaged formulation of the problem. An a priori assumed form of velocity profile is needed to complete the system. In a local Stokes flow analysis, a quadratic profile is the exact solution for the velocity field though it must be modified when inertial effects become important. Extension of the velocity profile to a cubic profile is selected enabling specification of a wall friction model to include the roughness of the cylinder wall. A modelling advantage of including the inertia term, relevant to the applications considered, is that a smooth progression in solution can be obtained between cases of low Reynolds number corresponding to lubrication theory, and high Reynolds number corresponding to uniform rimming-flow. Importantly, we also investigate the effect of inertia on some typical solutions from other studies and present a greater insight to existing and new film solutions which arise from including inertia effects.}, doi = {10.1063/1.4825134}, eissn = {1089-7666}, issn = {1070-6631}, issue = {10}, journal = {Physics of Fluids}, note = { School:C-Eng8,}, publicationstatus = {Published}, publisher = {American Institute of Physics}, url = {https://nottingham-repository.worktribe.com/output/718648}, volume = {25}, author = {Kay, E.D. and Hibberd, S. and Power, H.} }