Sophie E. Darch
Density-dependent fitness benefits in quorum-sensing bacterial populations
Darch, Sophie E.; West, Stuart A.; Winzer, Klaus; Diggle, Stephen P.
Authors
Abstract
It has been argued that bacteria communicate using small diffusible signal molecules to coordinate, among other things, the production of factors that are secreted outside of the cells in a process known as quorum sensing (QS). The underlying assumption made to explain QS is that the secretion of these extracellular factors is more beneficial at higher cell densities. However, this fundamental assumption has never been tested experimentally. Here, we directly test this by independently manipulating population density and the induction and response to the QS signal, using the opportunistic pathogen Pseudomonas aeruginosa as a model organism. We found that the benefit of QS was relatively greater at higher population densities, and that this was because of more efficient use of QS-dependent extracellular “public goods.” In contrast, the benefit of producing “private goods,” which are retained within the cell, does not vary with cell density. Overall, these results support the idea that QS is used to coordinate the switching on of social behaviors at high densities when such behaviors are more efficient and will provide the greatest benefit.
Citation
Darch, S. E., West, S. A., Winzer, K., & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences, 109(21), https://doi.org/10.1073/pnas.1118131109
Journal Article Type | Article |
---|---|
Deposit Date | Mar 28, 2014 |
Journal | Proceedings of the National Academy of Sciences |
Print ISSN | 0027-8424 |
Electronic ISSN | 1091-6490 |
Publisher | National Academy of Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 109 |
Issue | 21 |
DOI | https://doi.org/10.1073/pnas.1118131109 |
Public URL | https://nottingham-repository.worktribe.com/output/710300 |
Publisher URL | http://www.pnas.org/content/109/21/8259 |
Files
Diggle_Density_dependant.pdf
(814 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc/4.0
You might also like
Clostridium beijerinckii strain degeneration is driven by the loss of Spo0A activity
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search