Skip to main content

Research Repository

Advanced Search

Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors

Gatina, Dilara Z.; Garanina, Ekaterina E.; Zhuravleva, Margarita N.; Synbulatova, Gulnaz E.; Mullakhmetova, Adelya F.; Solovyeva, Valeriya V.; Kiyasov, Andrey P.; Rutland, Catrin S.; Rizvanov, Albert A.; Salafutdinov, Ilnur I.

Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors Thumbnail


Authors

Dilara Z. Gatina

Ekaterina E. Garanina

Margarita N. Zhuravleva

Gulnaz E. Synbulatova

Adelya F. Mullakhmetova

Valeriya V. Solovyeva

Andrey P. Kiyasov

Albert A. Rizvanov

Ilnur I. Salafutdinov



Abstract

Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses’ furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.

Citation

Gatina, D. Z., Garanina, E. E., Zhuravleva, M. N., Synbulatova, G. E., Mullakhmetova, A. F., Solovyeva, V. V., …Salafutdinov, I. I. (2021). Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. International Journal of Molecular Sciences, 22(11), Article 5922. https://doi.org/10.3390/ijms22115922

Journal Article Type Article
Acceptance Date May 27, 2021
Online Publication Date May 31, 2021
Publication Date Jun 1, 2021
Deposit Date Jun 2, 2021
Publicly Available Date Jun 2, 2021
Journal International Journal of Molecular Sciences
Print ISSN 1661-6596
Publisher MDPI AG
Peer Reviewed Peer Reviewed
Volume 22
Issue 11
Article Number 5922
DOI https://doi.org/10.3390/ijms22115922
Keywords Physical and Theoretical Chemistry; Inorganic Chemistry; Organic Chemistry; Spectroscopy; Molecular Biology; Catalysis; General Medicine; Computer Science Applications
Public URL https://nottingham-repository.worktribe.com/output/5622649
Publisher URL https://www.mdpi.com/1422-0067/22/11/5922

Files




You might also like



Downloadable Citations