Skip to main content

Research Repository

Advanced Search

Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle

Wallace, Mark N.; Berger, Joel I.; Hockley, Adam; Sumner, Christian J.; Akeroyd, Michael A.; Palmer, Alan R.; McNaughton, Peter A.

Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle Thumbnail


Authors

Mark N. Wallace

Joel I. Berger

Adam Hockley

Christian J. Sumner

Alan R. Palmer

Peter A. McNaughton



Abstract

Rodent models of tinnitus are commonly used to study its mechanisms and potential treatments. Tinnitus can be identified by changes in the gap-induced prepulse inhibition of the acoustic startle (GPIAS), most commonly by using pressure detectors to measure the whole-body startle (WBS). Unfortunately, the WBS habituates quickly, the measuring system can introduce mechanical oscillations and the response shows considerable variability. We have instead used a motion tracking system to measure the localized motion of small reflective markers in response to an acoustic startle reflex in guinea pigs and mice. For guinea pigs, the pinna had the largest responses both in terms of displacement between pairs of markers and in terms of the speed of the reflex movement. Smaller, but still reliable responses were observed with markers on the thorax, abdomen and back. The peak speed of the pinna reflex was the most sensitive measure for calculating GPIAS in the guinea pig. Recording the pinna reflex in mice proved impractical due to removal of the markers during grooming. However, recordings from their back and tail allowed us to measure the peak speed and the twitch amplitude (area under curve) of reflex responses and both analysis methods showed robust GPIAS. When mice were administered high doses of sodium salicylate, which induces tinnitus in humans, there was a significant reduction in GPIAS, consistent with the presence of tinnitus. Thus, measurement of the peak speed or twitch amplitude of pinna, back and tail markers provides a reliable assessment of tinnitus in rodents.

Citation

Wallace, M. N., Berger, J. I., Hockley, A., Sumner, C. J., Akeroyd, M. A., Palmer, A. R., & McNaughton, P. A. (2024). Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle. Frontiers in Neuroscience, 18, Article 1452450. https://doi.org/10.3389/fnins.2024.1452450

Journal Article Type Article
Acceptance Date Jul 24, 2024
Online Publication Date Aug 7, 2024
Publication Date 2024
Deposit Date Sep 13, 2024
Publicly Available Date Sep 13, 2024
Journal Frontiers in Neuroscience
Print ISSN 1662-4548
Electronic ISSN 1662-453X
Publisher Frontiers Media
Peer Reviewed Peer Reviewed
Volume 18
Article Number 1452450
DOI https://doi.org/10.3389/fnins.2024.1452450
Keywords guinea pig, sodium salicylate, rodent, Preyer reflex, gap-induced prepulse inhibition
Public URL https://nottingham-repository.worktribe.com/output/38898535
Publisher URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1452450/full

Files





You might also like



Downloadable Citations