Dr Peter Rose Peter.Rose@nottingham.ac.uk
ASSISTANT PROFESSOR
Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis
Rose, Peter; Moore, Philip K.; Ming, Shen Han; Nam, Ong Choon; Armstrong, Jeffrey S.; Whiteman, Matt
Authors
Philip K. Moore
Shen Han Ming
Ong Choon Nam
Jeffrey S. Armstrong
Matt Whiteman
Abstract
AIM: Hydrogen sulfide (H2S) is a prominent gaseous constituent of the gastrointestinal (GI) tract with known cytotoxic properties. Endogenous concentrations of H2S are reported to range between 0.2-3.4 mmol/L in the GI tract of mice and humans. Considering such high levels we speculate that, at non-toxic concentrations, H2S may interact with chemical agents and alter the response of colonic epithelium cells to such compounds. The GI tract is a major site for the absorption of phytochemical constituents such as isothiocyanates, flavonoids, and carotenoids, with each group having a role in the prevention of human diseases such as colon cancer. The chemopreventative properties of the phytochemical agent β-phenyethyl isothiocyanate (PEITC) are well recognized. However, little is currently known about the physiological or biochemical factors present in the GI tract that may influence the biological properties of ITCs. The current study was undertaken to determine the effects of H2S on PEITC mediated apoptosis in colon cancer cells.
METHODS: Induction of apoptosis by PEITC in human colon cancer HCT116 cells was assessed using classic apoptotic markers namely SubG1 population analysis, caspase-3 like activity and nuclear fragmentation and condensation coupled with the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] viability assay and LDH leakage.
RESULTS: PEITC significantly induced apoptosis in HCT116 cells as assessed by SubG1 population formation, nuclear condensation, LDH leakage and caspase-3 activity after 24 h, these data being significant from control groups (P < 0.01). In contrast, co-treatment of cells with physiological concentrations of H2S (0.1-1 mmol/L) prevented PEITC mediated apoptosis as assessed using the parameters described.
CONCLUSION: PEITC effectively induced cell death in the human adenocarcinoma cell line HCT116 in vitro through classic apoptotic mechanisms. However, in the presence of H2S, apoptosis was abolished. These data suggest that H2S may play a significant role in the response of colonic epithelial cells to beneficial as well as toxic agents present within the GI tract.
Citation
Rose, P., Moore, P. K., Ming, S. H., Nam, O. C., Armstrong, J. S., & Whiteman, M. (2005). Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis. World Journal of Gastroenterology, 11(26), 3990-3997. https://doi.org/10.3748/wjg.v11.i26.3990
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 15, 2004 |
Online Publication Date | Jul 14, 2005 |
Publication Date | Jul 14, 2005 |
Deposit Date | Jan 29, 2025 |
Journal | World Journal of Gastroenterology |
Print ISSN | 1007-9327 |
Electronic ISSN | 2219-2840 |
Publisher | Baishideng Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 26 |
Pages | 3990-3997 |
DOI | https://doi.org/10.3748/wjg.v11.i26.3990 |
Keywords | Apoptosis; Colon cancer; Hydrogen sulfide; β-phenylethyl isothiocyanate |
Public URL | https://nottingham-repository.worktribe.com/output/3219673 |
Publisher URL | https://www.wjgnet.com/1007-9327/full/v11/i26/3990.htm |
You might also like
Editorial: Novel compounds from chemistry to druggable candidates
(2024)
Journal Article
Update on the global prevalence and severity of kiwifruit allergy: a scoping review
(2023)
Journal Article
The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search