Dr MOJTABA AHMADIEHKHANESAR MOJTABA.AHMADIEHKHANESAR@NOTTINGHAM.AC.UK
RESEARCH FELLOW
Support Vector Regression for Multi-objective Parameter Estimation of Interval Type-2 Fuzzy Systems
Ahmadieh Khanesar, Mojtaba; Branson, David
Authors
Professor David Branson DAVID.BRANSON@NOTTINGHAM.AC.UK
PROFESSOR OF DYNAMICS AND CONTROL
Abstract
© 2020, Springer Nature Singapore Pte Ltd. This paper presents a support vector regression-based multi-objective parameter estimation method for interval type-2 fuzzy systems, which deals with prediction interval rather than its crisp output value. Such a prediction interval covers future values of data which is quite useful in some tasks. A narrower yet inclusive prediction interval is more desirable and contains more information, as it avoids conservative lower and upper limits for data. Earlier support vector regression-based estimation approaches for the parameters of interval type-2 fuzzy systems do not have control over this width and instead focus on prediction accuracy. In this work, to control such a prediction interval, a multi-objective cost function is introduced that other than a term corresponding to prediction accuracy includes a weighted term corresponding to width of prediction interval. The weight used for the width of prediction interval provides a trade-off between prediction accuracy and width of prediction interval. The cost function is formulated in terms of a constrained quadratic objective function problem which can be solved using well established quadratic programming approaches. The proposed method is successfully applied to the prediction of the chaotic Mackey-Glass time series, where it can be observed that the proposed method is capable of controlling prediction interval through appropriate selection of weighting parameter. For instance, the prediction of the chaotic Mackey-Glass time series is done with probable 70% decrease in sum of absolute value of prediction interval with respect to the existing support vector regression estimation algorithm while maintaining the prediction accuracy. This is the main benefit of the current approach over previous approaches in the literature.
Citation
Ahmadieh Khanesar, M., & Branson, D. (2020). Support Vector Regression for Multi-objective Parameter Estimation of Interval Type-2 Fuzzy Systems. In Soft Computing for Problem Solving 2019: Proceedings of SocProS 2019, Volume 1 (97-108). Springer Verlag. https://doi.org/10.1007/978-981-15-3290-0_8
Online Publication Date | Apr 30, 2020 |
---|---|
Publication Date | 2020 |
Deposit Date | Jun 18, 2019 |
Publicly Available Date | May 1, 2021 |
Publisher | Springer Verlag |
Pages | 97-108 |
Series Title | Advances in Intelligent Systems and Computing |
Series Number | 1138 |
Series ISSN | 2194-5357 |
Book Title | Soft Computing for Problem Solving 2019: Proceedings of SocProS 2019, Volume 1 |
Chapter Number | 8 |
ISBN | 9789811532894 |
DOI | https://doi.org/10.1007/978-981-15-3290-0_8 |
Public URL | https://nottingham-repository.worktribe.com/output/2204283 |
Publisher URL | https://link.springer.com/chapter/10.1007/978-981-15-3290-0_8 |
Additional Information | This book features the outcomes of the 9th International Conference on Soft Computing for Problem Solving, SocProS 2019 |
Contract Date | Jun 16, 2019 |
Files
SocProS 2019 Paper 21
(1.1 Mb)
PDF
You might also like
Comparison of point cloud densification from multi-view stereo and 3D Gaussian splatting in industrial photogrammetry
(2024)
Presentation / Conference Contribution
An adaptive lumped-mass dynamic model and its control application for continuum robots
(2024)
Journal Article
Design and control of a compliant robotic actuator with parallel spring-damping transmission
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search