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Abstract. This paper presents a support vector regression based multi-objective
parameter estimation method for interval type-2 fuzzy systems, which deals with
prediction interval rather than its crisp output value. Such a prediction interval
covers future values of data which is quite useful in some tasks. A narrower yet
inclusive prediction interval is more desirable and contains more information, as
it avoids conservative lower and upper limits for data. Earlier support vector re-
gression based estimation approaches for the parameters of interval type-2 fuzzy
systems do not have control over this width and instead focus on prediction ac-
curacy. In this work, to control such a prediction interval a multi-objective cost
function is introduced that other than a term corresponding to prediction accu-
racy, includes a weighted term corresponding to width of prediction interval. The
weight used for the width of prediction interval provides a tradeoff between pre-
diction accuracy and width of prediction interval. The cost function is formulated
in terms of a constrained quadratic objective function problem which can be
solved using well established quadratic programming approaches. The proposed
method is successfully applied to the prediction of the chaotic Mackey-Glass time
series, where it can be observed that the proposed method is capable of controling
prediction interval through appropriate selection of weighting parameter. For
instance, the prediction of the chaotic Mackey-Glass time series is done with
probable 70% decrease in sum of absolute value of prediction interval with
respect to existing support vector regression estimation algorithm while
maintaining the prediction accuracy. This is the main benefit of the current
approach over previous approaches in literature.

Keywords: Identification, interval type-2 fuzzy logic systems, quadratic pro-
gramming, regression model

1 Introduction

Since not all experts in a field agree on the same membership grades for a given input
to the fuzzy systems, interval type-2 fuzzy systems (IT2FLSs) are introduced which
benefit from fuzzy membership functions [1]. Other than an ability to cover different
meaning of words for experts, using such fuzzy membership functions, IT2FLSs are
capable of dealing with uncertainty and noise in a much more effective way than their



type-1 counterparts [2]. The fact that uncertainty and noise exist in almost all real-time
applications gives rise to widespread use of IT2FLSs in such applications [1].

Although, IT2FLSs benefit from interval valued membership functions and conse-
quent part parameters, the final output of a fuzzy system after defuzzification and type-
reduction is a crisp value. However, interval valued outputs for an identifier are also
beneficial and gives more information about future values. Such prediction lowers the
risks of decision made in various applications [3].

Various training methods are used to estimate the parameters of an IT2FLS. The
interval fuzzy logic models investigated in [4] and [5] benefit from type-1 fuzzy logic
systems with its parameters being estimated using a [, approach. Recursive least square
method has been applied to estimate the parameters of two independent type-1 fuzzy
logic systems acting as the lower and upper limits for data [6]. These approaches are
used in cases when data values to be identified are interval.

As the consequent part parameters of IT2FLSs appear linearly in the output,
computational methods such as least squares are more appreciated as they are capable
of tuning these parameters in two stages without iteration and does not require any
design parameters [7]. Support vector regression (SVR) is an alternative non-iterative
training method derived from support vector machine and successfully applied to
IT2FLSs resulting in high generalisation properties [8].

In this paper, a novel training method for the estimation of the parameters of IT2FLS
is introduced. In the proposed estimation algorithm, the output of IT2FLS is represented
in the form of an interval. Such an interval may be useful to describe processes such as
temperature, stock price, skill transfer of various human motions to robot and etc. The
mentioned covering interval needs to be inclusive of the data and be as narrow as
possible. To obtain such an interval, an appropriate cost function is proposed and the
parameters of IT2FLS are estimated to minimize such cost function in two stages
similar to the approaches studied in [8] and [9]. Another similarity of the proposed
approach to [8] and [9] is that the proposed algorithm does not require any iterations
and does not necessitate the choise of any design parameters. However, the superiority
of the proposed approach over [8], [9] and [10], is that it provides means to control the
width of uncertainty. As it is mentioned earlier, it is highly desired for the width of
prediction interval to be as narrow as possible. Considering the width of prediction
interval as well as prediction accuracy, parameter estimation for IT2FLSs is a
multiobjective optimization problem. Corresponding cost function is designed, in
which an appropriate gain is given to width of prediction interval. Quadratic
programming algorithm is then used to minimize this cost function. The proposed
algorithm is then tested against chaotic Mackey-Glass time series, where it is shown
that the proposed algorithm can predict an appropriate interval for such time-series. It
is further observed that using the weight in the cost function, makes it possible to obtain
a narrower prediction interval while maintaining prediction accuracy. The proposed
approach is compared to number of previous approaches in literature which shows
superior performance for the proposed approach.

This paper is organized as: Section 2 provides overview of the basic structure of
IT2FLS. The proposed methodology for the training of IT2FLSs are presented in



Section III. The experimental results of the proposed IT2FLSs are illustrated in Section
IV. Finally, in Section V the concluding marks are presented.

2 General structure of Interval Type-2 Fuzzy Logic System

Several structure for IT2FLSs and its type-reducers are investigated [11] [12]. The
structure used in this paper benefits from interval type-2 fuzzy membership functions
in the antecedent part and interval values for the consequent part parameters. A typical
fuzzy IF-THEN rule for such a structure is
IF x, is Aj; and x, is Aj; and ...and x,, is Aj,

THEN y; =YL, &;x +f; (1)

where x4, x,, ... ,x, are the input variables, y is the single output variable. Moreover
A;;’s are interval type-2 fuzzy membership functions for j** rule of the i*" input. &;
and ﬁj (i=1,..,nj=1,..,M) are the interval parameters in the consequent part of
the rules which satisfy the following equation.

@ € [ay, @y, B € (B}, E,-] )
The following definitions are made.

Fp=Xl1 @ixi + B; 3)
Fj = Yio1 @x; + Ej 4
W/ (x) = ppg (1) %% g (n) 5)
W () = g () % By () (6)

where pj () are fi,j () are the lower and upper membership function corresponding
k k

to j** rule for x; and " = " is a t-norm operator. The output value of IT2FLS is given as

Y(x) = [yi(x), yr(0)] (7
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where x € R™ is a vector of inputs of system. There exist various defuzzifiers+type
reducers to calculate Y (x) which is an interval type-1 set represented by its right and
left bounds among which the Maclauren based first order approximate output of the
fuzzy system is chosen [12]. It is shown that the accuracy of this method is less than
accurate model of Enhanced Karnik-Mendel model [13] and higher than Biglarbegian-
Melek-Mendel [14] and Nie-Tan models [15]. However, this algorithm is faster than



Enhanced Karnik-Mendel model and it does not require the sorting procedure as is
required by Enhanced Karnik-Mendel model [13]. The Maclauren based first order

approximate output of the fuzzy system is as [12]:

Y € [y, ¥l

)

where y; and y, are being the lower and upper bounds of the output of type-2 fuzzy

system which are calculated as:

M, W +whF 45, (sign@m)awiF)

T M @ whes L (sign(md)awd)
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and Aw’/ = w’ — w/. Furthermore, y, is calculated as

M @ +whEI-sM | (sign(m))awIE )
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The final crisp output value of IT2FLS is obtained as
_ Yityr
Y(x) = 22

It is then possible to rewrite (8) as

— VM J7)
Vr = j=1 VRFR
where:
j Wj+wj+sign(ﬁj)ij
Vg =

S, sl (signGiaw))

The parameter y, in a vector form is obtained as:

Yr = ¢R9
where

br = [VR, Vixs, .o, Vi Xn] "

(10)
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and @y is defined as
Vr = Vi VR (19)
Furthermore, 8 is defined as

—T p— p— _ _ _ _
Otnsnym = (B Brp @1rs - @apgy -+ Aty - ) A

Similarly, it is possible to rewire the equation corresponding to y; (10) in a vector form
as

yi =Ty viFl 20)
where:

vl = zﬁlgjiig:;’g (SLT;;A&;AW) @b
The parameter y; in a vector form is obtained as.

=0 (22)
where

¢ = V[, V%1,V xn]" (23)
and @, is defined as.

Vv, =[vi,...,vMT (24)

Furthermore, 6 is defined as.

T —
Otmsvym = [Brs- s Bus @11y, Bapgs -+, Ay - U]

3 Support Vector Regression Model

Let the training set for the fuzzy system be {(xq,t1),..., (xy,ty)}, With t, k =
1,..., N being the target values for the fuzzy system. Support vector regression model
guarantees that training error is kept less than € [9]. In this case, the system is penalized
if the absolute value of error is larger than € and is not penalized otherwise. The dead
zone cost function can describe the penalty function assigned for the training of fuzzy
system.

0 if lex]l <e

lex| — & otherwise’ k=1..N (23)

D£k={

where e, is identification error. To solve this problem, the following constrained
optimization problem is defined.



Din 3070, +3676, + C Xy (i + 50 (25)
s.t. tk_%(¢L,kQ+¢R,k§) Se+é, k=1...,N (26)
~(Puil + bril) —te S e+ & k=1,...,N @7)
1§k 20 VK (28)

While absolute values of errors less than € are tolerated, for an absolute value of error
larger than ¢, the positive slack parameters &, and & penalize the cost function. The
parameter C forms a trade off between the complexity of model and its accuracy. Figure
2 illustrates this concept.

Output

Input

Fig. 1. Dead zone cost function for a linear SVM.

This cost function and its solution for IT2FLSs have been considered widely in
literature [8] [9]. Although such approach results in high performance identifier, there
is no control over the width of uncertainty (y;,- — y;). This width of uncertainty bounds
data and gives valuable information about it. Narrower width of uncertainty contains
more information about data and can be used more effectively in decision making
applications. Motivated by this fact a modified cost function for support vector
regression model is proposed.

4 Proposed Multi-objective Support Vector Regression Based
Parameter Estimation Method

As it is mentioned earlier current support vector regression based parameter estimation
methods do not have any control over the width of interval of output (y, — y;).
Therefore, to control such parameter, it is required to include it in the cost function. The
proposed cost function in this case is as.
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In comparison to existing SVR algorithm presented in (25)-(28), in the proposed
algorithm, the cost function is changed and two more non-equalties of (32) and (33) are
added. In the proposed cost function while the condition (33) including £~ guarantees
that y, never becomes greater than target value, the condition (32) including &*
guarantees that y, never falls below target value. Furthermore, the terms I; and I, in
(29) provide means for making the width of interval [y;, y,.] as small as desired by
pushing y, and y; towards t,. The parameter y is responsible for penalizing the
prediction interval which makes the interval as narrow as desired.

As the regressor values ¢, j and ¢y depend on values of consequent part parameters,
it is required to do the optimization twice. First since the consequent part parameters
are unknown, the regressor values ¢, and ¢ are chosen as.

br = [Vk, VX, .o, Vixn]” (33)

and vy, is defined as.

Vg = [VA,...,v¥]T (36)
where:

j__w
VR = S (37
and
¢ = V[,V xy,..., Vi xn]" (38)

and v, is defined as.

v, = [vi,..., v (39)



where:
- 40
v, = Zj}ile ( )

On the second step, based on the initial conditions found for  and 5, the regressor
values of IT2FLS are calculated based on equations (5)-(22) developed in Section II.
The pseudo code of the proposed algorithm is as.

. Input Selection and data processing

. Present data in terms of maximum and minimum

. Split data to test and train dataset

. MF Generation for IT2FLS

. Obtain regressors using updated consequent part parameters using (35)- (40)

. Tune the consequent part parameters (first stage) to obtain the regressors using

quadratic programming approach to solve optimization problem (29)-(34)

7. Obtain regressors using updated consequent part parameters using (16)- (19) and
(20)- (24)

8. Tune the consequent part parameters (second stage) using quadratic programming
approach to solve (29)-(34)

9. Evaluate the performance for train and test data. If error is satisfactory STOP,

otherwise GOTO 4).

AN N AW =

5 Simulation Results

To investigate the efficacy of the proposed algorithm and its ability to control the
prediction interval width, it is applied to the prediction of Mackey-glass chaotic system.
Accuracy performance of the proposed method is compared with existing methods in
literature.

5.1 Chaotic Time-Series Prediction

Mackey-Glass time series is a well-known time-series that models the blood cell regu-
lation and has a dynamic behavior. The delayed differential equation dynamic of this
chaotic system is described as [16].

x(t-71)

x(t) =a 1+x10(t-7)

= Bx(t) (41)

where @ = 0.2, § = 0.1 and T = 17. To implement the system in discrete time, first
order Euler method is used with its time sample T being equal to Ty = 1s. The aim is
to predict six-steps ahead x(t + 6) using current and past data of x(t), x(t — 6), x(t —
12) and x(t —18). The dataset consists of 1000 data sample with 80% being
considered for training and 20% being used for test data. The membership functions
used in the paper are Gaussian type-2 fuzzy membership functions with crisp centre
and interval o values.



The pseudo-code of the algorithm is as of Section 4. Table 1. presents the compari-
son results of the proposed algorithm with some of approaches in literature. As can be
seen from this table, the proposed approach is capable of obtaining superior perfor-
mance than some previous neural network [17] and neuro-fuzzy [8], [18]- [19] based
approaches in literature. Furthermore, to investigate the effect of the parameter y, sim-
ulations are done with various y values. As can be seen from Fig. 2, the width of pre-
diction interval decreases as the parameter y increases from zero to one while the pre-
diction accuracy remains close. Width of prediction interval (WPE) is calculated as:

WPE =YX,y — y1) (42)

Table 1. Comparison results between the proposed approach and other results in literature for
prediction of chaotic time series Mackey-Glass system

Method RMSE of error
FALCON-ART [18] 0.04
GA-Ensemble [20] 0.026
SONFIN [21] 0.018
SVR fuzzy [10] 0.013
WNN-HLAs [17] 0.006
ANFIS [22] 0.007
SVD [23] 0.012
SA-TIFLS [19] 0.016
SA-T2FLS [19] 0.009
TSK-SVR1[8] 0.008
TSK-SVRII [8] 0.007
Proposed approach (¢ =0.01,C =40andy = 0.1) 0.007
Proposed approach (¢ =0.01,C=40andy =1) 0.006
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Fig. 2. The influence of y on width of prediction interval
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The index term WPE for the case when y = 0 is obtained as equal to 208.43 while it is
equal to 52.34 when y = 1. This shows over 74% improvement in the results.

6 Conclusions and Future Works

6.1 Conclusions

In this paper, a novel approach for parameter estimation of IT2FLSs based on a multi-
objective cost function that includes a term penalizing the width of prediction interval
and another term corresponding to prediction accuracy is proposed. Quadratic program-
ming method is used to minimize the cost function and estimate the parameters of
IT2FLS. The proposed approach is tested on the prediction of chaotic Mackey-Glass
system. It is shown through simulation that with appropriate choice of this parameter it
is possible to obtain a narrower yet covering prediction interval while maintaining the
prediction accuracy. The comparison between the prediction accuracy of the proposed
method with other approaches in literature also shows superior performance.

6.2 Future Work

In future, the proposed method will be implemented on a robot being used to learn
human motion when accomplishing simple manufacturing tasks such as sealant path
production and assembly operations. In this work, the motion is recorded from several
demonstrations made by one or more humans. As all experts do not agree on the same
way to perform a task, and they may even change their preferred method over time. The
movements result in a histogram. It is highly appreciated to obtain the narrowest pos-
sible prediction interval for human motion while obtaining highly accurate crisp output
value for IT2FLS.
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