Michelle Cutajar
Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants
Cutajar, Michelle; Machado, Fabricio; Cuzzucoli Crucitti, Valentina; Braovac, Susan; Stockman, Robert A.; Howdle, Steven M.; Harding, Stephen E.
Authors
Fabricio Machado
VALENTINA CUZZUCOLI CRUCITTI VALENTINA.CUZZUCOLICRUCITTI1@NOTTINGHAM.AC.UK
Research Fellow
Susan Braovac
ROBERT STOCKMAN robert.stockman@nottingham.ac.uk
Professor of Organic Chemistry
Prof. STEVE HOWDLE STEVE.HOWDLE@NOTTINGHAM.AC.UK
Professor of Chemistry
STEPHEN HARDING STEVE.HARDING@NOTTINGHAM.AC.UK
Professor of Applied Biochemistry
Abstract
The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass Mw of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers—particularly TPA7—have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.
Citation
Cutajar, M., Machado, F., Cuzzucoli Crucitti, V., Braovac, S., Stockman, R. A., Howdle, S. M., & Harding, S. E. (2022). Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants. Scientific Reports, 12(1), Article 18411. https://doi.org/10.1038/s41598-022-21027-4
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 21, 2022 |
Online Publication Date | Nov 1, 2022 |
Publication Date | Dec 1, 2022 |
Deposit Date | Jan 3, 2023 |
Publicly Available Date | Jan 3, 2023 |
Journal | Scientific Reports |
Electronic ISSN | 2045-2322 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 1 |
Article Number | 18411 |
DOI | https://doi.org/10.1038/s41598-022-21027-4 |
Public URL | https://nottingham-repository.worktribe.com/output/13449299 |
Publisher URL | https://www.nature.com/articles/s41598-022-21027-4 |
Files
hydroxylated polymers
(1.5 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
hydroxylated polymers
(521 Kb)
PDF
You might also like
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search