Skip to main content

Research Repository

Advanced Search

Comparison of different human tissue processing methods for maximization of bacterial recovery

Askar, Mohamed; Ashraf, Waheed; Scammell, Brigitte; Bayston, Roger


Mohamed Askar

Waheed Ashraf

Brigitte Scammell

Roger Bayston


Tissues are valuable microbiological samples that have proved superiority over swabs. Culture of tissue samples is used in the diagnosis of a variety of infections. However, as well as factors such as the site of obtaining the sample, the number of samples, and previous antibiotic use, the method of tissue processing may have an important effect on sensitivity. Data from the literature comparing different tissue processing methods is very limited. This study aimed to compare different mechanical and chemical methods of tissue processing in terms of efficacy and retaining the viability of the bacteria in the tissues. Standard suspensions of Staphylococcus aureus and Escherichia coli were prepared and treated differently to test the effect of that treatment on bacterial viability. Artificially inoculated pork tissue and known infected human tissue samples were then processed by different methods prior to culture, and results were compared. Percentages of reduction in the number of viable bacteria compared to the control by homogenization was similar to 5-min dithiothreitol treatment but significantly lower than bead beating. Bacterial recovery from homogenized human tissues was significantly higher than from any other method of treatment. Although bead beating could be the most efficient method in obtaining a homogeneous tissue product, it significantly reduces the number of viable bacteria within tissues. Homogenization offers the most effective easily controllable retrieval of bacteria from tissue and retains their viability. Guidelines for diagnosing infections using tissue samples should include a standardized processing method.


Askar, M., Ashraf, W., Scammell, B., & Bayston, R. (2019). Comparison of different human tissue processing methods for maximization of bacterial recovery. European Journal of Clinical Microbiology and Infectious Diseases, 38(1), 149-155.

Journal Article Type Article
Acceptance Date Oct 3, 2018
Online Publication Date Oct 24, 2018
Publication Date Jan 30, 2019
Deposit Date Oct 10, 2018
Publicly Available Date Nov 2, 2018
Journal European Journal of Clinical Microbiology and Infectious Diseases
Print ISSN 0934-9723
Electronic ISSN 1435-4373
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 38
Issue 1
Pages 149-155
Keywords Homogenization; Tissue; Processing
Public URL
Publisher URL