Imran A. Butt
Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice
Butt, Imran A.; Wattis, Jonathan A.D.
Abstract
We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice
with hexagonal symmetry. Using asymptotic methods based on
small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers
are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy,
and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.
Citation
Butt, I. A., & Wattis, J. A. Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice
Journal Article Type | Article |
---|---|
Deposit Date | Jul 23, 2008 |
Journal | J Phys A Theor Gen |
Peer Reviewed | Peer Reviewed |
Volume | 40 |
Keywords | Fermi-Pasta-Ulam lattice, breathers |
Public URL | https://nottingham-repository.worktribe.com/output/1017252 |
Files
hex8.pdf
(1.3 Mb)
PDF
You might also like
Investigative power of Genomic Informational Field Theory (GIFT) relative to GWAS for genotype-phenotype mapping
(2024)
Preprint / Working Paper
On the Meaning of Averages in Genome-wide Association Studies: What Should Come Next?
(2023)
Journal Article
GIFT: New method for the genetic analysis of small gene effects involving small sample sizes
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search