Skip to main content

Research Repository

Advanced Search

Discrimination power of long-term heart rate variability measures for Chronic Heart Failure detection

Melillo, Paolo; Fusco, Roberta; Sansone, Mario; Bracale, Marcello; Pecchia, Leandro

Discrimination power of long-term heart rate variability measures for Chronic Heart Failure detection Thumbnail


Authors

Paolo Melillo

Roberta Fusco

Mario Sansone

Marcello Bracale

Leandro Pecchia



Abstract

The aim of this study was to investigate the discrimination power of standard long-term Heart Rate Variability (HRV) measures for the diagnosis of Chronic Heart Failure (CHF).
We performed a retrospective analysis on 4 public Holter databases, analyzing the data of 72 normal subjects and 44 patients suffering from CHF. To assess the discrimination power of HRV measures, we adopted an exhaustive search of all possible combinations of HRV measures and we developed classifiers based on Classification and Regression Tree (CART) method, which is a non-parametric statistical technique.
We found that the best combination of features is: Total spectral power of all NN intervals up to 0.4 Hz (TOTPWR), square Root of the Mean of the Sum of the Squares of Differences between adjacent NN intervals (RMSSD) and Standard Deviation of the Averages of NN intervals in all 5-minute segments of a 24-hour recording (SDANN). The classifiers based on this combination achieved a specificity rate and a sensitivity rate of 100.00% and 89.74% respectively.
Our results are comparable with other similar studies, but the method we used is particularly valuable because it provides an easy to understand description of classification procedures, in terms of intelligible “if … then …” rules. Finally, the rules obtained by CART are consistent with previous clinical studies.

Citation

Melillo, P., Fusco, R., Sansone, M., Bracale, M., & Pecchia, L. (2011). Discrimination power of long-term heart rate variability measures for Chronic Heart Failure detection. Medical and Biological Engineering and Computing, 49(1), https://doi.org/10.1007/s11517-010-0728-5

Journal Article Type Article
Publication Date Jan 1, 2011
Deposit Date Feb 13, 2012
Publicly Available Date Feb 13, 2012
Journal Medical and Biological Engineering and Computing
Print ISSN 0140-0118
Electronic ISSN 1741-0444
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 49
Issue 1
DOI https://doi.org/10.1007/s11517-010-0728-5
Keywords Heart Rate Variability (HRV), Chronic Heart Failure (CHF), worsening assessment, Classification and regression tree (CART)
Public URL https://nottingham-repository.worktribe.com/output/1010333
Publisher URL http://www.springerlink.com/content/c5739h26192h7762/
Related Public URLs http://www.springerlink.com/
Additional Information The original publication is available at www.springerlink.com

Files





Downloadable Citations