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Abstract

The aim of this study was to investigate the
discrimination power of standard long-term Heart Rate
Variability (HRV) measures for the diagnosis of
Chronic Heart Failure (CHF).

We performed a retrospective analysis on 4 public
Holter databases, analyzing the data of 72 normal
subjects and 44 patients suffering from CHF. To assess
the discrimination power of HRV measures, we
adopted an exhaustive search of al possble
combinations of HRV measures and we developed
classifiers based on Classification and Regression Tree
(CART) method, which is a non-parametric statistical
technique.

We found that the best combination of features is:
Total spectral power of all NN intervals up to 0.4 Hz
(TOTPWR), square Root of the Mean of the Sum of
the Squares of Differences between adjacent NN
intervals (RMSSD) and Standard Deviation of the
Averages of NN intervalsin al 5-minute segments of a
24-hour recording (SDANN). The classifiers based on
this combination achieved a specificity rate and a
sensitivity rate of 100.00% and 89.74% respectively.

Our results are comparable with other similar studies,
but the method we used is particularly valuable
because it provides an easy to understand description
of classification procedures, in terms of intelligible “if
... then ...” rules. Finaly, the rules obtained by CART
are consistent with previous clinical studies.
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1. Introduction

Heart Rate Variability (HRV) is the variation over time
of the period between consecutive heartbeats (RR
intervals)[30] and is a non-invasive measure commonly
used to assess the influence of the autonomic nervous
system (ANS) on the heart[23]. HRV has been widely
studied in patients suffering from Chronic Heart
Failure (CHF)[1-3, 5, 10-11, 13, 17, 19, 27, 32].

CHF is a patho-physiological condition in which an
abnormal cardiac function is responsible for the failure
of the heart to pump blood as required by the body.
CHF has been shown to be degenerative and age
related[15].

The majority of studies in the literature used HRV
measures for the prognosis of the disease, in particular
as a predictor of the risk of mortality [2, 10-11, 17, 19,
32, 36]. A small number of studieq[3, 13] focused on
using HRV measures for CHF diagnosis. For instance,
Asyali [3] studied the discrimination power of long-
term HRV measures (time-domain and FFT-based
frequency domain) in order to distinguish normal
subject from CHF patients. Using linear discriminant
analysis and a Bayesian Classifier he obtained
sensitivity and specificity rates of 81.82% and 98.08%
respectively. Ider et a. [13] investigated the
discrimination power of short-term HRV measures,
including wavelet entropy. In this study, they achieved
the best performance using Genetic Algorithms and k-
Nearest Neighbour Classifier, resulting in a sensitivity
rate of 100.00% and a specificity rate of 94.74%.
Although this study reached interesting results, the
classifier proposed by Ider [13] relied on complex
features and rules which are difficult for clinicians to
interpret. In both these studieq3, 13] the classifiers
were developed using a subset of the dataset adopted in
the current study.
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As regards clinical practice, international guidelines on
diagnosis and management of heart failure[15] showed
evidence that conventional 12-lead electrocardiogram
(ECG) should not form the primary basis for
determining the specific cardiac abnormality
responsible for the development of CHF, because of
low sensitivity and specificity.
The method we used to investigate the power of
standard long-term HRV measures in distinguishing
CHF patients from normal subjects is Classification
and Regression Tree (CART). CART, developed by
Breiman et a. [6], is widey used in severa
applications of pattern recognition especially for image
processing and for medical diagnosig[8]. The CART
algorithm iteratively splits the data set, according to a
criterion that maximizes the separation of the data,
producing atree-like decision structure[6].
CART was applied to HRV measures for other
investigations, such as for the diagnosis of Obstructive
Sleep Apnea Syndrome[31], and for the analysis of the
relationship between HRV and the menstrual cycle in
healthy young women [34]. We have adopted CART in
previous studies, to investigate discrimination power of
short-term HRV featureg[28-29] in distinguishing CHF
patients from normal subjects and in assessing CHF
severity. To the best of the authors' knowledge, CART
has not yet been applied to long-term HRV analysis for
CHF diagnosis. We chose the CART method, as it
provides a model of human understandable “if ... then”
rules which can be easy to read and to interpret. Thisis
crucid in medica applicationg7], in which the
physician is personally responsible of the diagnosis.
In this paper we used CART in order to:

1) define the “optimal” classifier, based on an

understandable set of rules for CHF detection;
2) find the “optimal” combination of standard
long-term HRV measures for CHF detection.

Among the classifiers achieving a good performance,
we chose as “optimal” the one which demonstrated
simultaneously the lowest estimated misclassification
probability and the lowest degree of overfitting.
We performed a retrospective analysis of four Holter
monitor public databases, and used only open source
and validated HRV toolkit software in order to allow
other scientists to reproduce our results. We adopted
the exhaustive search method to evaluate al the
possible combinations of HRV measures and in order
to develop and test a classifier for each combination of
measures.

2 Methods

2.1 Data

We analyzed 116 nominal 24-hour records, from 72
normal subjects and 44 suffering from CHF. The
overall dataset consisted of 54 men, 43 women and 19
unknown-gender subjects, aged 20 to 79 (55+14 years).
The normal subjects were 35 men and 37 women, aged
20 to 76 (55+16 years). The CHF subjects were 19
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men, 6 women and 19 unknown-gender subjects, aged
22 t0 79 (56+11 years).

The data for normal subjects were retrieved from the
Normal Sinus Rhythm RR Interval Database [9] and
from the MIT-BIH Norma Sinus Rhythm Database
[9]. The former includes RR intervals extracted from
24-hour ECG recordings from 30 men and 24 women,
aged 29 to 76 (61+12 years). The latter includes long-
term ECG recordings from 5 men and 13 women, aged
20 to 50 (618 years). The data for the CHF group
were retrieved from the Congestive Heart Failure RR
Interval Database[9] and from the BIDMC Congestive
Heart Failure Database [9]. The former includes RR
intervals extracted from 24-hour ECG-Holter
recordings of 8 men, 2 women, and 19 unknown-
gender subjects, aged 34 to 79 (55+11 years). The latter
database includes long-term ECG recordings from 11
men and 4 women, aged 22 to 71 (56+11 years), with
severe congestive heart failure.

All the records are provided with beat annotations
obtained by automated analysis with manual review
and correction, with the exception of beat annotations
from the BIDMC Congestive Heart Failure Database
which were not manualy corrected. All the original
ECG records were digitized at 128 samples per second,
with the exception of the records from the BIDMC
Congestive Heart Failure Database, which were
sampled at 250 samples per second.

2.2 Long-term HRV measures

We performed standard long-term HRV analysis on
nominal 24-hour recordings according to International
Guidelines[23].

The series of normal to normal (NN) beat intervals
were obtained from the beat annotation files of the
selected four databases and the NN/RR ratio was
computed as the fraction of total RR intervals classified
as normal-to-normal (NN) intervals. This ratio has
been used as a measure of data reliability, excluding
records with aratio less than a threshold. Thresholds of
80% [9] and 90%[3] were proposed. We chose a
threshold of 85%, as it was a satisfactory trade-off
between numbers of included subjects and quality of
NN signals. Using this technique, 6 records were
excluded (5 CHF and 1 normal) and the final dataset
consisted of 110 subjects: 71 healthy people and 39
CHF patients.

All the computed basic time- and frequency-domain
HRV measures were widely used in the literature [23,
30]. A number of standard statistical time-domain
HRV measures are calculated: AVerage of all NN
intervals (AVNN), Standard Deviation of al NN
intervals (SDNN), Standard Deviation of the Averages
of NN intervals in all 5-minute segments of a 24-hour
recording (SDANN), mean of the Standard Deviations
of NN intervalsin all 5-minute segments of a 24-hour
recording (SDNN 1DX), sguare Root of the Mean of
the Sum of the Sguares of Differences between
adjacent NN intervals (RMSSD), percentage of
differences between adjacent NN intervals that are
longer than 50 ms (pNN50). Moreover, percentage of
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differences between adjacent NN intervals that are
longer than 12 ms (pNN12) was computed because
Mietus [25] showed that among pNNx measures
pPNN12 can provide the maximum separation between
normal subjects and CHF patients.

The frequency-domain HRV measures rely on the
estimation of power spectral density (PSD). Severa
methods were proposed in literature in order to
estimate PSD of RR intervals [12, 23, 26, 30]. In this
study, we estimated PSD both by Welch's averaged
modified periodogram[35] and by Lomb-Scamble
periodogram [22]. For the Welch's periodgram, the NN
interval was first interpolated with cubic spline
interpolation at 4 Hz. The interpolated series was
divided into overlapping segments of length 4000
points and each segment was Hanning windowed. The
overlap was chosen to be 1200 pointg3]. After PSD
estimation, six standard frequency-domain HRV
measures were calculated: total spectral power of all
NN intervals up to 0.4 Hz (TOTPWR), between 0 and
0.003 Hz (ULF), between 0.003 and 0.04 Hz (VLF),
between 0.04 and 0.15 Hz (LF), between 0.15 and 0.4
Hz (HF), ratio of low to high frequency power
(LF/HF). Further in the paper, we will refer Welch-
based measures and the Lomb-Scamble-based ones by
using the subscript W and LS, respectively. For
instance, TOTPWRy, refers to the estimination of
TOTPWR computed by using Welch periodgram,
while TOTPWR,s refers to the one obtained by Lomb-
Scamble periodgram.

2.3 Feature selection

CART resembles a stepwise feature selection, as at
each gsplitting it tries to obtain the most relevant
information from the part of the space it is working on.
However, one feature may not be included in the final
tree because its effect was masked by other variables.
In order to deal with masking and find the best subset
of features, we adopted the so-called exhaustive search
method[14], investigating the predictive value of all the
possible combinations of k out of N features (with k
from 1 to N). Since the number of features N is 13, we
investigated 2**=8092 subsets of features, training and
testing the same number of classification trees, as
further discussed. In order to facilitate comparisons of
our results with previous studies, we performed the
feature selection twice: once using frequency-domain
features measured by Welch periodogram; once using
frequency-domain features measured by Lomb-
Scamble periodogram.

2.4 Optimal classification tree for each
combination of features

The CART method consists of two steps: tree growing
and tree pruning [6]. In the former step, the tree grows
by selecting from all the possible splits, those which
generate the “purer” child nodes, where the purest node
is the one containing elements of only one class. The
outcome of this step is referred to as the large-tree
(LT). Inthe latter step, the LT is pruned according to a
minimal cost-complexity function, which relies on the
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number of nodes and the misclassification probability.
The outcome of this step is the best sub-tree (BST)
which achieves the lowest value of the cost-complexity
function.

In the tree growing, among different functions that
have been defined for the measure of the impurity of
each nodet [6], we adopted the Gini index criterion[6],
which, for binary classification, can be computed as
follows:

Gini index(t) =1- p*(ift) — p>(j[t); (1)
where “t” is the considered node, “i” and “j” are the
two class labels, p(it) and p(j[t) are the conditional
probability of observing at node “t” a subject belonging
totheclass“i” or “j”, respectively.

In the tree pruning, CART searches among all the sub-
trees, selecting the Best Sub-Tree (BST) as the one that
minimizes a cost-complexity function, R,(T), which is
a linear combination of misclassification probability,
R(T), and tree complexity, [T|, defined as its number of
nodes (see eq.2) [6].

R,(T)=R(T)+aT| @

Where o is a non negative parameter. We estimated
R(T) twicee once as mean on several testing
subsamples, using a Cross-Validation (CV) technique;
once on al the sample, using a Re-Substitution (RS)
technique. The former, named further R(T)cy, Was used
to stop the tree pruning (equation 2), the later, named
further R(T)rs, wWas used to estimate the degree of
overfitting (see eg. 3).

We estimated R(T) cv by the 10-fold-cross-validation
(10-CV) procedure [33], which consists of randomly
dividing the dataset into 10 subsamples, with almost
equal size and same class proportion. The first step of
the 10-CV consists of excluding a subsample (testing)
in turn and developing a tree with the remaining 9
subsamples (training). The second step of the 10-CV
consists of using the testing subsample to estimate its
misclassification probability as the ratio between the
number of misclassified cases and the total number of
cases in the testing subsample. From this two step we
have 10 trees, using the same combination of features,
and for each a misclassification probability r(t);. R(T)cv
is estimated as the average over these ten r(t);.
Moreover, we computed the standard error for R(T)c,
named further SEgcy. Further details about minimal
cost-complexity pruning can be found in Breiman [6].
Finally, R(T)rs was estimated using al the sample to
train and test the tree.

2.5 Optimal feature combination

For each subset of features, we repeated the steps
described in section 2.4, finding the BST. We
estimated the overfitting of each BST by introducing a
normalized measure of the degree of overfitting OvM,
which compares R(t)cy with R(t)gs [16]:

OWM = R(T)cv - R(T)RS 3)

R(M)ev
If OvM is higher than 1, we assumed that the tree
overfitted the training data.
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We chose as the best subset of features the one, or the
ones, whose BST achieved a value of OvM lower than
1 and avalue R(t)., not higher than 10%.

Finaly, for the selected classifiers we computed a
metric of performance measures in order to compare
our system with others, using the formulae reported in
Table 1.

Table 1 Binary Classification Performance Measures

Measure Abbreviation Formula
Accuracy Acc TP+TN
TP+TN+FP+FN
Precision Pre TP
TP+FP
Sensitivity Sen ™
TP+FN
Specificity Spe ™
FP+TN
AreaUnder 1 TP ™
the Curve AUC AUCzE[TM FN +TN+FP);

TP: the number of CHF patients detected

TN: number of normal subject detected

FP: number of normal subject incorrectly labelled as CHF
FN: number of CHF patients incorrectly labelled as normal.

2.6 Implementation details

The HRV extraction and analysis was performed using
PhysioNet's HRV Toolkit[9]. We chose thistoolkit as it
is an open source and a rigorously validated package.
In particular, the implementation of the LS
periodogram adopted in this paper is the lomb.c
program available from Physionet[20].

The feature selection and classification were performed
by in-house software developed in MATLAB version
R2009b (The MathWorks Inc., Natick,

MA). In particuar CART was implemented by
utilizing the methods and construction of the
MATLAB class classregtree.

3 Results

The optimal features are those whose BST achieved
R(t),<10% and OvM<1. these features are reported t in
Table 2 and their BSTs are shown in Figure 1.

Table 2 Classification Performance Measurements of
the CART classifiers based on single HRV feature with
R(t)e not higher than 10% and OvM lower than 1

R(t)cv SDR(t)cv R(t)res features selected
by CART

7.27% 2.41% 6.36% SDNN
8.18% 2.52% 6.36% SDANN
9.09% 2.62% 8.18% TOTPWRwy
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{ category % n
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Total 100.0 110
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MNode 1 MNode 2
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WCHF 944 34| [mcCHF 68 5
Total 327 36| | Total  67.3 74
o | NodeO |

Category % n'
I®™ Normal 645 711

B CHF 35.5 39
Total 100.0 110

........... |1:
SDTNN

== 76.869 = 76.869

MNode 1 MNode 2

Category % n
® Normal  91.0 71

Category % n
B MNormal 00 0

WCHF 1000 32| [WCHF 90 7
Total 291 32| | Total 708 78
9 T NodeO :

{ _category % n
1% Normal 645 71

B CHF 355 39
Total 100.0 110

"""""" =
TDTFl'WRw
<= 6312.239 =B6312.239
Node 1 Node 2

Category % n Category % n
B MNormal 00 0 ® Normal 88.8 71
u CHF 100.0 30 B CHF 11.2 9

Total 273 30 Total 727 80

Fig. 1 The fina model tree for the following HRV
features. & SDNN, b) SDANN, ¢) TOTPWRy

Table 3 reports the optimal combinations of features
and Figure 2 showstheir BSTs.

In Fig. 1 and Fig. 2 the paths from the first node to
each terminal one are a graphical representation of a set
of “if ... then” rules. For instance, the path to the
terminal node 2 in the Fig. 2a can be read as: “if
TOTPWR, s is higher than 8271.86 ms® and RMSDD is
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higher than 15.62 ms, then the subject is classified as
normal”.

Table 3 Classification Performance Measurements of
the CART classifiers based on combination of HRV
features with R(t),, not higher than 10% and OvM
lower than 1

R(t)cv SD R(t)ev R(t)res

features selected
by CART

TOTPWRL,
RMSSD, SDANN

VLF.s, pNN12

5.46% 2.10% 3.64%
10.00%  2.64% 9.09%

In the models shown in Fig. 1, if the selected feature
(SDNN; SDANN; TOTPWRy) was lower than a
threshold (93.892 ms; 76.869 ms;, 6,313.239 ms’,
respectively), the subject was classified as a CHF
patient, otherwise as anormal subject.

In the model shown in Fig. 2a, the initial variable
selected by CART (at node 1 split) was TOTPWR,s .
The subjects whose TOTPWR, s is lower than 8271.86
ms’ were correctly classified as CHF patient. CART
selected RM SSD for the second node split. In this node
split, the subjects whose RMSSD were higher than
15.62 ms were classified as normal. This splitting
determined the four false negatives of the classifier. A
final classification split is based on SDANN, that is, if
it is lower than 106.71 ms, the subject is classified as
CHF patient, otherwise as a normal subject.

In the model shown in Fig. 2b, the initial variable
selected by CART (at node 1 split) was VLF_s. The
subjects whose VLF g is lower than 558.048 ms” were
correctly classified as CHF patient. CART selected
pNN212 for the second node split. In this node split, the
subjects whose pNN12 were lower than 36.466 were
classified as CHF patients, the others as normal
subject. This splitting determined the nine false
negatives and the one fal se positive of the classifier.
Table 4 shows the performance measures of the BSTs
and of two classifiers proposed by other authors [3,
13].

Among those combinations of features, TOTPWR_s,
RMSSD and SDANN achieved the best performance
in terms of the estimated probability of misclassifying
any future cases. Its BST achieved specificity and
sensitivity rates of 100% and 89.74%.

4 Discussion

In this study, we investigate the discrimination power
of standard long-term Heart Rate Variability (HRV)
measures for the diagnosis of Chronic Heart Failure.
We analyzed single features and all their possible
combinations.

It was indicated that the combinations of standard long-
teem HRV measures TOTPWR,s, RMSSD, and
SDANN enable distinguishing normal subjects from
CHF patients with specificity and sensitivity rates of
100% and 89.74% respectively.
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Category % nf:
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MNode 3 Node 4
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" MNormal 250 1 ® Normal 886 70
B CHF 750 3 B CHF 114 9
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Fig. 2 The find mode tree for the following
combinations of HRV features:

a) TOTPWR_s, RMSSD, SDANN;

b) VLF_sand pNN12

The combination of pNN12 and VLF confirms the
discrimination power of pNN12 proved by Mietus [25],
but the performance of its BST is lower as shown in
Table 3.
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Table 4 Classification Performance Measurements of the classifiers proposed in the current study and those proposed in

previously published papers.

Classifier based on single feature T#P F;L\I T;;\I ';P Ag/ic P;)E S(I;)N S(;JE AOL/:JC
SDNN 34 5 69 2 93.64 9444 8718 97.18 92.18
SDANN 32 7 7 0 93.64 100.0 8205 100.0 91.03
TOTPWRy 26 9 71 0 9151 100.0 7429 1000 87.14
Asyali [3] (based on SDNN) 18 4 =51 1 9324 9474 8182 98.08 89.95
Classifier based on combination of features T#P '1\] T;‘ F#P A;;C P;)E S(I)E/ON S(;)E AOL/iC
TOTPWR_s, RMSSD, SDANN 3B 4 71 0 96.36 100.0 89.74 100.0 94.87
VLF_s, pNN12 26 9 70 1 90.57 9630 7429 9859 86.44
Isler [13] * 29 0 b51 3 96.39 9063 1000 9444 97.22

* based on short-term HRV measures

The sets of rules of the proposed models are clinically
consistent, even if CART did not use any medica a
priori knowledge. In fact, the main clinical result of
this research is that terminal node classifying as CHF
patients are on the left, therefore revealing lower values
of the splitting features for CHF patients. This is
coherent with the results showed by Bigger [5],
Musialik-Lydka [27] and Arbolishvili [1], who stated
that standard long-term HRV measures were
significantly depressed in CHF patients, compared with
normal subjects. It should be emphasized that the
findings of Bigger [5] and Arbolishvilli [1] were
obtained adopting different methods for power spectral
density estimation, while Musaik-Lydka [27]
considered only time-domain HRV measures.

With regard to the performance of the classifiersin this
study, they can be compared with a few previoudy
published studies [3, 13], which developed a classifier
in order to distinguish CHF patients from normal
subject, as reported in Table 4. In both these studies the
classifiers were developed using a smaller dataset than
in the current study, as they used only the MIT-BIH
Normal Sinus Rhythm Database [9] and the Congestive
Heart Failure RR Interval Database [9].

The performance measures of our classifiers are higher
than those of Asyali’'s classifier [3], which used HRV
long term measures. Asyadi [3] identified SDNN and
SDANN as the HRV measures with the highest class
separation power and the results in the current study
confirm this identification. Moreover, our study
showed that TOTPWRy is the third measure for
separation power (see Table 2). Thisis not in line with
Asyali findings [3], which showed that the TOTPWRyy
discrimination power is the second-last. This could be
because Asyali used Fisher's Linear Discriminant
Analysis (LDA) without proving normal distribution of
HRV features. In fact, LDA is strongly affected by
non-normality of data[18] and for that reason is
expected to provide less accurate information about no-
normal measures, such as TOTPWR([4].

The performance measures of our classifier are lower
than those of Ider’s classifier[13], which used HRV
short-term measures. The best combination of features
selected by Ider consists of 8 features including sex,
FFT-based measures, LS periodogram measures and
wavelet entropy measures with a sensitivity rate of
100.00% and a specificity rate of 94.74%[13]. The
higher sensitivity rate may be because of the
discrimination power of wavelet entropy measures,
which have not been considered in this study because
they are not standard HRV measures, presumably too
complex to understand for most clinicians. Moreover,
Isler’s classifierg 13] were based on at |east 8 features.
As regards the chosen method, this improved
intelligibility in comparison to Ider's one [13] and
minimized the risk of overfitting in comparison to
Asyali’s on€[3]. In fact, Idler[13] adopted k-nearest-
neighbor (KNN) classifiers, which lack the property of
the interpretability of induced knowledge [21]. While,
Asyali [3] developed a Bayesian Classifier and the
classification is based on the following rule: “a subject
with an SDNN value higher (lower) than tan threshold
top: IS Classified as normal (abnormal)”. This rule is the
same of the BST in fig. 2a, with a dightly different
threshold: 93.89 for CART classifier, 91.82 for Bayes
classifier. However, Asyaly computed the threshold on
the whole dataset and provided no information about
probability of misclassification, as he did not use cross-
validation approach nor independent test set.

Our study had the following limitations: a small and
unbalanced dataset, the differences in the sampling
frequency of ECG recordings and the different
extraction procedures of NN intervals. As concerns the
sampling frequency of ECG, it should be remembered
that the finite sampling frequency introduce an error in
the RR interval measurement as shown by Merri [24].
However, a sampling rate of 128 Hz, which is the
lowest sampling rate of the records used in this paper,
has been found to be accurate enough to locate the R-
peaks and hence compute HRV[23]. In future research
we are planning to develop a similar study on a larger
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dataset of ECG recordings digitalized at the same
sampling frequency and annotated with a stated
procedure.

We concluded that the long-term HRV measures
enable CHF patients to be distinguished from normal
subjects confirming results of previous studies. In
particular, the combination TOTPWR_s, RMSSD,
SDANN allows detecting CHF patients with a
precision and a specificity of 100.00%, an accuracy of
96.36%, a sensitivity of 89.74% and an estimated
misclassification probabilityof 5.46%.

Our results are consistent with the consensus that
depressed HRV values are good indicators of CHF.
Furthermore, we estimated numerical threshold values
for a set of a few standard HRV measures, arranged in
adecision tree, which isfully human intelligible.
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