Skip to main content

Research Repository

Advanced Search

Outputs (14)

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior (2019)
Journal Article
Vaithilingam, J., Sanjuan‐Alberte, P., Campora, S., Rance, G. A., Jiang, L., Thorpe, J., Burroughs, L., Tuck, C. J., Denning, C., Wildman, R. D., Hague, R. J. M., Alexander, M. R., & Rawson, F. J. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 29(38), Article 1902016. https://doi.org/10.1002/adfm.201902016

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materia... Read More about Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior.

Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces (2019)
Journal Article
Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G., Vaithilingam, J., Alexander, M. R., Hague, R. J. M., & Rawson, F. J. (2019). Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces. ACS Applied Materials and Interfaces, 11(9), 8928-8936. https://doi.org/10.1021/acsami.8b22075

There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components wi... Read More about Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces.

Wireless bioelectronic nanosystems for intracellular communication (2018)
Other
Sanjuán-Alberte, P., Abayzeed, S. A., Fuentes-Domínguez, R., Alea-Reyesd, M. E., Clark, M., Hague, R., Alexander, M., Pérez-García, L., & Rawson, F. (2018). Wireless bioelectronic nanosystems for intracellular communication

In order for the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to both sense and actuate cell behaviour. Herein we report the first example of an innovativ... Read More about Wireless bioelectronic nanosystems for intracellular communication.

Electrochemically stimulating developments in bioelectronic medicine (2018)
Journal Article
Sanjuan-Alberte, P., Alexander, M. R., Hague, R. J., & Rawson, F. J. (2018). Electrochemically stimulating developments in bioelectronic medicine. Bioelectronic Medicine, 4(1), https://doi.org/10.1186/s42234-018-0001-z

Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging e... Read More about Electrochemically stimulating developments in bioelectronic medicine.