Skip to main content

Research Repository

Advanced Search

Outputs (14)

Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools (2024)
Journal Article
Fashedemi, O. O., Ozoemena, O. C., Peteni, S., Haruna, A. B., Shai, L. J. J., Chen, A., Rawson, F. J., Cruickshank, M. E., Grant, D. M., Ola, O., & Ozoemena, K. I. (2024). Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools. Analytical Methods, https://doi.org/10.1039/d4ay01921k

Human papillomavirus (HPV) infection is the main cause of cervical cancer and other cancers such as anogenital and oropharyngeal cancers. The prevention screening and treatment of cervical cancer has remained one of the top priorities of the World He... Read More about Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools.

Using Oscillation to Improve the Insertion Depth and Consistency of Hollow Microneedles for Transdermal Insulin Delivery with Mechanistic Insights (2024)
Journal Article
Smith, F., Kotowska, A. M., Fiedler, B., Cerny, E., Cheung, K., Rutland, C. S., Chowdhury, F., Segal, J., Rawson, F. J., & Marlow, M. (2025). Using Oscillation to Improve the Insertion Depth and Consistency of Hollow Microneedles for Transdermal Insulin Delivery with Mechanistic Insights. Molecular Pharmaceutics, 22(1), 316-329. https://doi.org/10.1021/acs.molpharmaceut.4c00942

Microneedles (MNs) offer the potential for discrete and painless transdermal drug delivery, yet poor insertion and dosing consistency have hindered their clinical translation. Specifically, hollow MNs are appropriate for the administration of liquid... Read More about Using Oscillation to Improve the Insertion Depth and Consistency of Hollow Microneedles for Transdermal Insulin Delivery with Mechanistic Insights.

Wireless electrical–molecular quantum signalling for cancer cell apoptosis (2023)
Journal Article
Jain, A., Gosling, J., Liu, S., Wang, H., Stone, E. M., Chakraborty, S., Jayaraman, P.-S., Smith, S., Amabilino, D. B., Fromhold, M., Long, Y.-T., Pérez-García, L., Turyanska, L., Rahman, R., & Rawson, F. J. (2024). Wireless electrical–molecular quantum signalling for cancer cell apoptosis. Nature Nanotechnology, 19, 106-114. https://doi.org/10.1038/s41565-023-01496-y

Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biol... Read More about Wireless electrical–molecular quantum signalling for cancer cell apoptosis.

Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer (2023)
Journal Article
Peteni, S., Ozoemena, O. C., Khawula, T., Haruna, A. B., Rawson, F. J., Shai, L. J., Ola, O., & Ozoemena, K. I. (2023). Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer. ACS Sensors, 8(7), 2761-2770. https://doi.org/10.1021/acssensors.3c00677

Human papillomavirus (HPV) is the causative agent for cervical cancer. Of the various types of HPV, the high-risk HPV-16 type is the most important antigenic high-risk HPV. In this work, the antigenic HPV-16 L1 peptide was immobilized on a glassy car... Read More about Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer.

Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs (2022)
Journal Article
Sanjuan-Alberte, P., Whitehead, C., Jones, J. N., Silva, J. C., Carter, N., Kellaway, S., Hague, R. J., Cabral, J. M., Ferreira, F. C., White, L. J., & Rawson, F. J. (2022). Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. iScience, 25(7), Article 104552. https://doi.org/10.1016/j.isci.2022.104552

Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized ex... Read More about Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs.

Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells (2021)
Journal Article
Robinson, A. J., Jain, A., Rahman, R., Abayzeed, S., Hague, R. J., & Rawson, F. J. (2021). Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS Omega, 6(44), 29495-29505. https://doi.org/10.1021/acsomega.1c03547

Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applica... Read More about Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells.

Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins (2021)
Journal Article
Hicks, J. M., Yao, Y.-C., Barber, S., Neate, N., Watts, J. A., Noy, A., & Rawson, F. J. (2021). Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. Small, 17(32), Article 2102517. https://doi.org/10.1002/smll.202102517

Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogram... Read More about Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins.

Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles (2020)
Journal Article
Jain, A., Trindade, G. F., Hicks, J. M., Potts, J. C., Rahman, R., J. M. Hague, R., Amabilino, D. B., Pérez-García, L., & Rawson, F. J. (2021). Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 587, 150-161. https://doi.org/10.1016/j.jcis.2020.12.025

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles.

Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles (2020)
Other
Jain, A., Trindade, G., Hicks, J. M., Potts, J. C., Rahman, R., Hague, R., Amabilino, D. B., Pérez-García, L., & Rawson, F. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., Clark, M., Alexander, M. R., Hague, R. J. M., Pérez-García, L., & Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.