Skip to main content

Research Repository

Advanced Search

Outputs (2)

Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids (2022)
Journal Article
Fischer, S., Flis, P., Zhao, F., & Salt, D. E. (in press). Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids. Plant Physiology, 190(3), 1715-1730. https://doi.org/10.1093/plphys/kiac360

Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously es... Read More about Transcriptional networks underpinning ploidy related increased leaf potassium in neo-tetraploids.

Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots (2020)
Journal Article
Fischer, S., Sánchez-Bermejo, E., Xu, X., Flis, P., Ramakrishna, P., Guerinot, M. L., …Salt, D. E. (2021). Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots. Journal of Experimental Botany, 72(2), 415-425. https://doi.org/10.1093/jxb/eraa465

High Arsenic Concentration 1 (HAC1), an Arabidopsis thaliana arsenate reductase, plays a key role in arsenate [As(V)] tolerance. Through conversion of As(V) to arsenite [As(III)], HAC1 enables As(III) export from roots, and restricts translocation of... Read More about Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots.