Skip to main content

Research Repository

Advanced Search

Outputs (15)

Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner

Pearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.

We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.

Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models (2021)
Journal Article
Bellos, D., Basham, M., Pridmore, T., & French, A. P. (2021). Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models. Scientific Reports, 11(1), Article 23279. https://doi.org/10.1038/s41598-021-02466-x

Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is mu... Read More about Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models.

Low-cost automated vectors and modular environmental sensors for plant phenotyping (2020)
Journal Article
Bagley, S. A., Atkinson, J. A., Hunt, H., Wilson, M. H., Pridmore, T. P., & Wells, D. M. (2020). Low-cost automated vectors and modular environmental sensors for plant phenotyping. Sensors, 20(11), Article 3319. https://doi.org/10.3390/s20113319

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increase... Read More about Low-cost automated vectors and modular environmental sensors for plant phenotyping.

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience, 8(11), Article giz123. https://doi.org/10.1093/gigascience/giz123

BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentat... Read More about RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures" (2019)
Data
French, A., Wells, D. M., Atkinson, J., Pound, M., Yasrab, R., & Pridmore, T. (2019). Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures". [Data]. https://doi.org/10.5524/100651

We present a new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously... Read More about Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures".

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Deep learning for multi-task plant phenotyping (2017)
Presentation / Conference Contribution
Pound, M. P., Atkinson, J. A., Wells, D. M., Pridmore, T. P., & French, A. P. (2017). Deep learning for multi-task plant phenotyping. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017 (2055-2063). https://doi.org/10.1109/ICCVW.2017.241

Plant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recent... Read More about Deep learning for multi-task plant phenotyping.

Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling (2017)
Journal Article
Daly, K. R., Tracy, S. R., Crout, N. M., Mairhofer, S., Pridmore, T. P., Mooney, S. J., & Roose, T. (2018). Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling. Plant, Cell and Environment, 41(1), 121-133. https://doi.org/10.1111/pce.12983

Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray Computed Tomography (CT) and image based modelling we tested the accuracy of this spatial averaging by directly calculati... Read More about Quantification of root water uptake in soil using X-ray Computed Tomography and image based modelling.

Approaches to three-dimensional reconstruction of plant shoot topology and geometry (2016)
Journal Article
Gibbs, J., Pound, M. P., French, A. P., Wells, D. M., Murchie, E. H., & Pridmore, T. P. (2016). Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Functional Plant Biology, 44(1), 62-75. https://doi.org/10.1071/FP16167

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and... Read More about Approaches to three-dimensional reconstruction of plant shoot topology and geometry.

A patch-based approach to 3D plant shoot phenotyping (2016)
Journal Article
Pound, M. P., French, A. P., Fozard, J. A., Murchie, E. H., & Pridmore, T. P. (2016). A patch-based approach to 3D plant shoot phenotyping. Machine Vision and Applications, 27(5), 767-779. https://doi.org/10.1007/s00138-016-0756-8

The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representat... Read More about A patch-based approach to 3D plant shoot phenotyping.