Skip to main content

Research Repository

Advanced Search

Outputs (1)

The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis (2020)
Journal Article
Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L. D., Stes, E., Cho, H., Larrieu, A., Xuan, W., Goodall, B., Cotte, B. V. D., Waite, J. M., Rigal, A., Harborough, S. R., Persiau, G., Vanneste, S., Kirschner, G. K., Vandermarliere, E., Martens, L., …De Smet, I. (2020). The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 19(8), 1248-1262. https://doi.org/10.1074/mcp.ra119.001826

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an... Read More about The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis.