Skip to main content

Research Repository

Advanced Search

Outputs (8)

Entangled time-crystal phase in an open quantum light-matter system (2023)
Journal Article
Mattes, R., Lesanovsky, I., & Carollo, F. (2023). Entangled time-crystal phase in an open quantum light-matter system. Physical Review A, 108(6), Article 062216. https://doi.org/10.1103/physreva.108.062216

Time crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle. While these phases have recently been the focus of intensive research, it is still far from clear whether they can host quantum c... Read More about Entangled time-crystal phase in an open quantum light-matter system.

Quantum reaction-limited reaction-diffusion dynamics of annihilation processes (2023)
Journal Article
Perfetto, G., Carollo, F., Garrahan, J. P., & Lesanovsky, I. (2023). Quantum reaction-limited reaction-diffusion dynamics of annihilation processes. Physical Review E, 108(6), Article 064104. https://doi.org/10.1103/physreve.108.064104

We investigate the quantum reaction-diffusion dynamics of fermionic particles which coherently hop in a one-dimensional lattice and undergo annihilation reactions. The latter are modelled as dissipative processes which involve losses of pairs 2A→∅, t... Read More about Quantum reaction-limited reaction-diffusion dynamics of annihilation processes.

Rydberg-ion flywheel for quantum work storage (2023)
Journal Article
Martins, W. S., Carollo, F., Li, W., Brandner, K., & Lesanovsky, I. (2023). Rydberg-ion flywheel for quantum work storage. Physical Review A, 108(5), Article L050201. https://doi.org/10.1103/PhysRevA.108.L050201

Trapped ions provide a platform for quantum technologies that offers long coherence times and high degrees of scalability and controllability. Here, we use this platform to develop a realistic model of a thermal device consisting of two laser-driven,... Read More about Rydberg-ion flywheel for quantum work storage.

Thermodynamics of Quantum Trajectories on a Quantum Computer (2023)
Journal Article
Cech, M., Lesanovsky, I., & Carollo, F. (2023). Thermodynamics of Quantum Trajectories on a Quantum Computer. Physical Review Letters, 131(12), Article 120401. https://doi.org/10.1103/physrevlett.131.120401

Quantum computers have recently become available as noisy intermediate-scale quantum devices. Already these machines yield a useful environment for research on quantum systems and dynamics. Building on this opportunity, we investigate open-system dyn... Read More about Thermodynamics of Quantum Trajectories on a Quantum Computer.

Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks (2023)
Journal Article
Boneberg, M., Carollo, F., & Lesanovsky, I. (2023). Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks. New Journal of Physics, 25, Article 093020. https://doi.org/10.1088/1367-2630/aceff4

Classical artificial neural networks, built from elementary units, possess enormous expressive power. Here we investigate a quantum neural network architecture, which follows a similar paradigm. It is structurally equivalent to so-called (1+1)D quant... Read More about Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks.

Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect (2023)
Journal Article
Magoni, M., Joshi, R., & Lesanovsky, I. (2023). Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect. Physical Review Letters, 131(9), Article 093002. https://doi.org/10.1103/physrevlett.131.093002

Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators. State-dependent operations are realized by exploiting electrostatic dipolar interactions that emerge, when two atoms are simult... Read More about Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect.

Reaction-Limited Quantum Reaction-Diffusion Dynamics (2023)
Journal Article
Perfetto, G., Carollo, F., Garrahan, J. P., & Lesanovsky, I. (2023). Reaction-Limited Quantum Reaction-Diffusion Dynamics. Physical Review Letters, 130(21), Article 210402. https://doi.org/10.1103/PhysRevLett.130.210402

We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice and are subject to dissipative processes analogous to those of classical reaction-diffusion models. Particles can either... Read More about Reaction-Limited Quantum Reaction-Diffusion Dynamics.

Collective atom-cavity coupling and nonlinear dynamics with atoms with multilevel ground states (2023)
Journal Article
Suarez, E., Carollo, F., Lesanovsky, I., Olmos, B., Courteille, P. W., & Slama, S. (2023). Collective atom-cavity coupling and nonlinear dynamics with atoms with multilevel ground states. Physical Review A, 107(2), Article 023714. https://doi.org/10.1103/PhysRevA.107.023714

We investigate experimentally and theoretically the collective coupling between atoms with multilevel ground-state manifolds and an optical cavity mode. In our setup the cavity field optically pumps populations among the ground states. The ensuing dy... Read More about Collective atom-cavity coupling and nonlinear dynamics with atoms with multilevel ground states.