Skip to main content

Research Repository

Advanced Search

Outputs (123)

Vibrational dressing in kinetically constrained Rydberg spin systems (2020)
Journal Article
Mazza, P. P., Schmidt, R., & Lesanovsky, I. (2020). Vibrational dressing in kinetically constrained Rydberg spin systems. Physical Review Letters, 125(3), https://doi.org/10.1103/PhysRevLett.125.033602

Quantum spin systems with kinetic constraints have become paradigmatic for exploring collective dynamical behavior in many-body systems. Here we discuss a facilitated spin system which is inspired by recent progress in the realization of Rydberg quan... Read More about Vibrational dressing in kinetically constrained Rydberg spin systems.

Reaching the quantum Hall regime with rotating Rydberg-dressed atoms (2020)
Journal Article
Burrello, M., Lesanovsky, I., & Trombettoni, A. (2020). Reaching the quantum Hall regime with rotating Rydberg-dressed atoms. Physical Review Research, 2(2), Article 023290. https://doi.org/10.1103/physrevresearch.2.023290

Despite the striking progress in the field of quantum gases, one of their much anticipated applications—the simulation of quantum Hall states—remains elusive: all experimental approaches so far have failed in reaching a sufficiently small ratio betwe... Read More about Reaching the quantum Hall regime with rotating Rydberg-dressed atoms.

Nonequilibrium Quantum Many-Body Rydberg Atom Engine (2020)
Journal Article
Carollo, F., Gambetta, F. M., Brandner, K., Garrahan, J. P., & Lesanovsky, I. (2020). Nonequilibrium Quantum Many-Body Rydberg Atom Engine. Physical Review Letters, 124(17), https://doi.org/10.1103/physrevlett.124.170602

The standard approach to quantum engines is based on equilibrium systems and on thermo-dynamic transformations between Gibbs states. However, non-equilibrium quantum systems offer enhanced experimental flexibility in the control of their parameters a... Read More about Nonequilibrium Quantum Many-Body Rydberg Atom Engine.

Submicrosecond entangling gate between trapped ions via Rydberg interaction (2020)
Journal Article
Zhang, C., Pokorny, F., Hennrich, M., Li, W., Lesanovsky, I., Higgins, G., & Pöschl, A. (2020). Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature, 580(7803), 345-349. https://doi.org/10.1038/s41586-020-2152-9

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are amo... Read More about Submicrosecond entangling gate between trapped ions via Rydberg interaction.

Collectively enhanced chiral photon emission from an atomic array near a nanofiber (2020)
Journal Article
Jones, R., Buonaiuto, G., Lang, B., Lesanovsky, I., & Olmos, B. (2020). Collectively enhanced chiral photon emission from an atomic array near a nanofiber. Physical Review Letters, 124(9), https://doi.org/10.1103/physrevlett.124.093601

Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within... Read More about Collectively enhanced chiral photon emission from an atomic array near a nanofiber.

Dynamics of strongly coupled disordered dissipative spin-boson systems (2020)
Journal Article
Fiorelli, E., Rotondo, P., Carollo, F., Marcuzzi, M., & Lesanovsky, I. (2020). Dynamics of strongly coupled disordered dissipative spin-boson systems. Physical Review Research, 2(1), https://doi.org/10.1103/physrevresearch.2.013198

Spin-boson Hamiltonians are an effective description for numerous quantum few-and many-body systems such as atoms coupled to cavity modes, quantum electrodynamics in circuits and trapped ion systems. While reaching the limit of strong coupling is pos... Read More about Dynamics of strongly coupled disordered dissipative spin-boson systems.

Engineering non-binary Rydberg interactions via electron-phonon coupling (2020)
Journal Article
Gambetta, F. M., Li, W., Schmidt-Kaler, F., & Lesanovsky, I. (2020). Engineering non-binary Rydberg interactions via electron-phonon coupling. Physical Review Letters, 124(4), https://doi.org/10.1103/PhysRevLett.124.043402

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezers arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms a... Read More about Engineering non-binary Rydberg interactions via electron-phonon coupling.

Classical stochastic discrete time crystals (2019)
Journal Article
Gambetta, F. M., Carollo, F., Lazarides, A., Lesanovsky, I., & Garrahan, J. P. (2019). Classical stochastic discrete time crystals. Physical Review E, 100(6), Article 060105(R). https://doi.org/10.1103/PhysRevE.100.060105

© 2019 American Physical Society. We describe a general and simple paradigm for discrete time crystals (DTCs), systems with a stable subharmonic response to an external driving field, in a classical thermal setting. We consider, specifically, an Isin... Read More about Classical stochastic discrete time crystals.

Dynamical creation and detection of entangled many-body states in a chiral atom chain (2019)
Journal Article
Buonaiuto, G., Jones, R., Olmos Sanchez, B., & Lesanovsky, I. (2019). Dynamical creation and detection of entangled many-body states in a chiral atom chain. New Journal of Physics, 21(11), https://doi.org/10.1088/1367-2630/ab4f50

Open quantum systems with chiral interactions can be realized by coupling atoms to guided radiation modes in photonic waveguides or optical fibres. In their steady state these systems can feature intricate many-body phases such as entangled dark stat... Read More about Dynamical creation and detection of entangled many-body states in a chiral atom chain.

Shuttling of Rydberg ions for fast entangling operations (2019)
Journal Article
VOGEL, J., LI, W., MOKHBERI, A., LESANOVSKY, I., & SCHMIDT-KALER, F. (2019). Shuttling of Rydberg ions for fast entangling operations. Physical Review Letters, 123(15), https://doi.org/10.1103/PhysRevLett.123.153603

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser i... Read More about Shuttling of Rydberg ions for fast entangling operations.