Skip to main content

Research Repository

Advanced Search

Outputs (3)

Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives (2021)
Journal Article
Meurs, J., Scurr, D. J., Lourdusamy, A., Storer, L. C., Grundy, R. G., Alexander, M. R., Rahman, R., & Kim, D.-H. (2021). Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives. Analytical Chemistry, 93(18), 6947-6954. https://doi.org/10.1021/acs.analchem.0c05087

We present here a novel surface mass spectrometry strategy to perform untargeted metabolite profiling of formalin-fixed paraffin-embedded pediatric ependymoma archives. Sequential Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) and liquid extr... Read More about Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives.

Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations (2021)
Journal Article
Vasey, C. E., Cavanagh, R. J., Taresco, V., Moloney, C., Smith, S., Rahman, R., & Alexander, C. (2021). Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations. Pharmaceutics, 13(2), Article 208. https://doi.org/10.3390/pharmaceutics13020208

Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less... Read More about Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations.

Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma (2020)
Journal Article
McCrorie, P., Vasey, C. E., Smith, S. J., Marlow, M., Alexander, C., & Rahman, R. (2020). Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. Journal of Controlled Release, 328, 917-931. https://doi.org/10.1016/j.jconrel.2020.11.022

© 2020 We review the challenges of next-generation therapeutics for both systemic and localised delivery to brain tumours and discuss how recent engineering advances may be used to enhance brain penetration of systemic delivery therapies. The unmet c... Read More about Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma.