Skip to main content

Research Repository

Advanced Search

XI WANG's Outputs (3)

Investigation on a class of 2D profile amplified stroke dielectric elastomer actuators (2024)
Journal Article
Wang, X., Raimondi, L., Axinte, D., & Dong, X. (2024). Investigation on a class of 2D profile amplified stroke dielectric elastomer actuators. Journal of Mechanisms and Robotics, 1-32. https://doi.org/10.1115/1.4066131

Dielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible fil... Read More about Investigation on a class of 2D profile amplified stroke dielectric elastomer actuators.

Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces (2024)
Journal Article
Wang, X., Li, S., Chang, J.-C., Liu, J., Axinte, D., & Dong, X. (2024). Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces. Nature Communications, 15, Article 6296. https://doi.org/10.1038/s41467-024-50598-1

From power plants on land to bridges over the sea, safety-critical built environments require periodic inspections for detecting issues to avoid functional discontinuities of these installations. However, navigation paths in these environments are us... Read More about Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces.

An analytical differential kinematics-based method for controlling tendon-driven continuum robots (2023)
Journal Article
Ba, W., Chang, J. C., Liu, J., Wang, X., Dong, X., & Axinte, D. (2024). An analytical differential kinematics-based method for controlling tendon-driven continuum robots. Robotics and Autonomous Systems, 171, Article 104562. https://doi.org/10.1016/j.robot.2023.104562

Generic and high-performance feedback control is still challenging for tendon-driven continuum robots. Conventional model-based controllers, based on the piecewise constant curvature (PCC) assumption, explicitly require the arc parameters (bending an... Read More about An analytical differential kinematics-based method for controlling tendon-driven continuum robots.