Skip to main content

Research Repository

Advanced Search

Professor MALCOLM BENNETT's Outputs (8)

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits (2025)
Journal Article
Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Komba, E. K., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Grondin, A., Vigouroux, Y., & Laplaze, L. (2025). Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits. PLoS ONE, 20(5), Article e0319140. https://doi.org/10.1371/journal.pone.0319140

Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential,... Read More about Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits.

Missing the input: the underrepresentation of plant physiology in global soil carbon research (2025)
Journal Article
Raza, S., Cooper, H. V., Girkin, N. T., Kent, M. S., Bennett, M. J., Mooney, S. J., & Colombi, T. (2025). Missing the input: the underrepresentation of plant physiology in global soil carbon research. SOIL, 11(1), 363-369. https://doi.org/10.5194/soil-11-363-2025

Plant processes regulating the quantity and quality of soil organic carbon inputs such as photosynthesis, above- and below-ground plant growth, and root exudation are integral to our understanding of soil carbon dynamics. However, based on a bibliome... Read More about Missing the input: the underrepresentation of plant physiology in global soil carbon research.

Single-cell transcriptomics reveal how root tissues adapt to soil stress (2025)
Journal Article
Zhu, M., Hsu, C.-W., Peralta Ogorek, L. L., Taylor, I. W., La Cavera, S., Oliveira, D. M., Verma, L., Mehra, P., Mijar, M., Sadanandom, A., Perez-Cota, F., Boerjan, W., Nolan, T. M., Bennett, M. J., Benfey, P. N., & Pandey, B. K. (2025). Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature, 642, 721-729. https://doi.org/10.1038/s41586-025-08941-z

Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Usin... Read More about Single-cell transcriptomics reveal how root tissues adapt to soil stress.

Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions (2025)
Journal Article
Mehra, P., Banda, J., Ogorek, L. L. P., Fusi, R., Castrillo, G., Colombi, T., Pandey, B. K., Sturrock, C. J., Wells, D. M., & Bennett, M. J. (2025). Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions. Annual Review of Plant Biology, 76, 18.1–18.26. https://doi.org/10.1146/annurev-arplant-083123-074506

Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heteroge... Read More about Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions.

Roles of hormones in regulating root growth–water interactions (2025)
Journal Article
Sharma, S., Bennett, M. J., & Mehra, P. (2025). Roles of hormones in regulating root growth–water interactions. Journal of Experimental Botany, 76(7), 1987-1995. https://doi.org/10.1093/jxb/eraf063

Water stress presents a critical challenge affecting plant growth and agricultural productivity, with drought alone causing substantial yield losses. Roots serve as the primary site for water uptake, enabling plants to detect water stress by sensing... Read More about Roles of hormones in regulating root growth–water interactions.

Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm (2025)
Journal Article
Kieber, J., Zheng, Z., Schnable, P. S., Dinneny, J. R., Banda, J., Sturrock, C. J., Pandey, B. K., Bennett, M., Scharwies, J. D., Clarke, T., Dinneny, A., Birkeland, S., Veltman, M. A., Torres-Martínez, H. H., Viana, W. G., & Khare, R. (2025). Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm. Science, 387(6734), 666-673. https://doi.org/10.1126/science.ads5999

Plants grow complex root systems to extract unevenly distributed resources from soils. Spatial differences in soil moisture are perceived by root tips, leading to the patterning of new root branches toward available water in a process called hydropat... Read More about Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm.

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits (2025)
Preprint / Working Paper
Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Grondin, A., Vigouroux, Y., & Laplaze, L. Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits

Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential,... Read More about Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits.

ABA-auxin cascade regulates crop root angle in response to drought (2025)
Journal Article
Xiong, Y., Song, X., Mehra, P., Yu, S., Li, Q., Tashenmaimaiti, D., Bennett, M., Kong, X., Bhosale, R., & Huang, G. (2025). ABA-auxin cascade regulates crop root angle in response to drought. Current Biology, 35(3), 542-553.e4. https://doi.org/10.1016/j.cub.2024.12.003

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecul... Read More about ABA-auxin cascade regulates crop root angle in response to drought.