Skip to main content

Research Repository

Advanced Search

Dr Mischa Zelzer's Outputs (3)

Multivariate analysis of 3D ToF-SIMS images: method validation and application to cultured neuronal networks (2015)
Journal Article
Van Nuffel, S., Parmenter, C. D., Scurr, D. J., Russell, N. A., & Zelzer, M. (in press). Multivariate analysis of 3D ToF-SIMS images: method validation and application to cultured neuronal networks. Analyst, 141(1), https://doi.org/10.1039/c5an01743b

Advanced data analysis tools are crucial for the application of ToF-SIMS analysis to biological samples. Here, we demonstrate that by using a training set approach principal components analysis (PCA) can be performed on large 3D ToF-SIMS images of ne... Read More about Multivariate analysis of 3D ToF-SIMS images: method validation and application to cultured neuronal networks.

3D chemical characterization of frozen hydrated hydrogels using ToF-SIMS with argon cluster sputter depth profiling (2015)
Journal Article
Taylor, M., Scurr, D., Lutolf, M., Buttery, L. D., Zelzer, M., & Alexander, M. R. (2015). 3D chemical characterization of frozen hydrated hydrogels using ToF-SIMS with argon cluster sputter depth profiling. Biointerphases, 11(2), Article 02A301. https://doi.org/10.1116/1.4928209

Hydrogels have been used extensively in bioengineering as artificial cell culture supports. Investigation of the interrelationship between cellular response to the hydrogel and its chemistry ideally requires methods that allow characterization withou... Read More about 3D chemical characterization of frozen hydrated hydrogels using ToF-SIMS with argon cluster sputter depth profiling.

Responsive cell–material interfaces (2015)
Journal Article
Dhowre, H. S., Rajput, S., Russell, N. A., & Zelzer, M. (2015). Responsive cell–material interfaces. Nanomedicine, 10(5), https://doi.org/10.2217/nnm.14.225

Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributi... Read More about Responsive cell–material interfaces.